Recall from 11/18 in-class $h_n(x) = x^{1+\frac{1}{2n-1}} = x\left(x^{\frac{1}{2n-1}}\right)$

1. Look back at your notes. What is $h(x) = \lim_{n \to \infty} h_n(x)$?

- 2. Find the sequence (h'_n)
- 3. Find $\lim_{n\to\infty} h'_n(x)$
- 4. Show that (h'_n) does not converge uniformly on [-1, 1].

Hint: Consider $\epsilon_0 = \frac{1}{2}$ and use continuity of h'_n at 0 to show there exists x > 0 such that $h'_n(x) < \frac{1}{2}$