Recall from 11/18 in-class $h_{n}(x)=x^{1+\frac{1}{2 n-1}}=x\left(x^{\frac{1}{2 n-1}}\right)$

1. Look back at your notes. What is $h(x)=\lim _{n \rightarrow \infty} h_{n}(x)$?
2. Find the sequence $\left(h_{n}^{\prime}\right)$
3. Find $\lim _{n \rightarrow \infty} h_{n}^{\prime}(x)$
4. Show that (h_{n}^{\prime}) does not converge uniformly on $[-1,1]$.

Hint: Consider $\epsilon_{0}=\frac{1}{2}$ and use continuity of h_{n}^{\prime} at 0 to show there exists $x>0$ such that $h_{n}^{\prime}(x)<\frac{1}{2}$

