$$
\text { Define } g_{n}(x)= \begin{cases}x^{n} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

1. Is $g_{0}(x)$ continuous at $x=0$?
2. (a) Argue that $g_{1}(x)$ is continuous at $x=0$
(b) Use the definition of the derivative to find $g_{1}^{\prime}(0)$
3. (a) Argue that $g_{2}(x)$ is continuous at $x=0$
(b) Use the rules from Calc I to find $g_{2}^{\prime}(x)$
(c) Is $g_{2}^{\prime}(x)$ continuous at $x=0$?
