Theorem 4.3.4 (Algebraic Continuity Theorem): Assume $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ are continuous at $c \in A$. Then
(i) $k f(x)$ is continuous for all $k \in \mathbb{R}$
(ii) $f(x)+g(x)$ is continuous at c
(iii) $f(x) g(x)$ is continuous at c
(iv) $f(x) / g(x)$ is continuous at c if the quotient is defined

Theorem 4.3.9: Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ where $f(A) \subset B$. If f is continuous at c and g is continuous at $f(c)$, then $f \circ g$ is continuous at c.

Theorem 4.4.1: Let $f: A \rightarrow \mathbb{R}$ be continuous and let $K \subset A$ be compact. Then $f(K)$ is compact.

Theorem 4.4.2 (Extreme Value Theorem): If $f: K \rightarrow \mathbb{R}$ is continuous on the compact set K, then f attains a maximum and minimum value on K.

That is, there exist $x_{0}, x_{1} \in K$ such that $f\left(x_{0}\right) \leq f(x) \leq f\left(x_{1}\right)$ for all $x \in K$.

Definition 4.4.4: A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A iff for all $\epsilon>0$ there exists $\delta>0$ such that $|x-y|<\delta$ implies that $|f(x)-f(y)|<\epsilon$.

Theorem 4.4.5: A function $f: A \rightarrow \mathbb{R}$ is not uniformly continuous on A iff there exists a particular $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A such that

$$
\lim \left|x_{n}-y_{n}\right|=0 \quad \text { but } \quad\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0} \text { for all } n
$$

Theorem 4.4.7: If $f: K \rightarrow \mathbb{R}$ is continuous and K is compact, then f is uniformly continuous on K.

1. Let $f: A \rightarrow \mathbb{R}$ be continuous on A
(a) If $B \subset A$ is open, is $f(B)$ open? Consider $f(x)=x^{2}, B=(-1,1)$
(b) If $B \subset A$ is closed, is $f(B)$ closed? Consider $f(x)=\frac{1}{x}, B=[1, \infty)$
(c) If $B \subset A$ is bounded, is $f(B)$ bounded? Consider $f(x)=\frac{1}{x}, B=(0,1)$
(d) If $B \subset A$ is compact, is $f(B)$ compact?
(e) Show that the Extreme Value Theorem does not hold if A is not compact.
2. Show that $f(x)=3 x+1$ is uniformly continuous on \mathbb{R}.
3. Use Theorem 4.4.5 to show that $g(x)=x^{2}$ is not uniformly continuous on \mathbb{R}. Hint: Let $\left(x_{n}\right)=\left(n+\frac{1}{n}\right)$ and $\left(y_{n}\right)=\left(n-\frac{1}{n}\right)$
