Theorem 4.3.4 (Algebraic Continuity Theorem): Assume $f : A \to \mathbb{R}$ and $g : A \to \mathbb{R}$ are continuous at $c \in A$. Then

- (i) kf(x) is continuous for all $k \in \mathbb{R}$
- (ii) f(x) + g(x) is continuous at *c*
- (iii) f(x)g(x) is continuous at *c*
- (iv) f(x)/g(x) is continuous at *c* if the quotient is defined

Theorem 4.3.9: Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ where $f(A) \subset B$. If f is continuous at c and g is continuous at f(c), then $f \circ g$ is continuous at c.

Theorem 4.4.1: Let $f : A \to \mathbb{R}$ be continuous and let $K \subset A$ be compact. Then f(K) is compact.

Theorem 4.4.2 (Extreme Value Theorem): If $f : K \to \mathbb{R}$ is continuous on the compact set K, then f attains a maximum and minimum value on K.

That is, there exist $x_0, x_1 \in K$ such that $f(x_0) \leq f(x) \leq f(x_1)$ for all $x \in K$.

Definition 4.4.4: A function $f : A \to \mathbb{R}$ is **uniformly continuous** on *A* iff for all $\epsilon > 0$ there exists $\delta > 0$ such that $|x - y| < \delta$ implies that $|f(x) - f(y)| < \epsilon$.

Note:

- This says that given $\epsilon > 0$, the same $\delta > 0$ works for every point $x \in A$.
- Uniform continuity is a property on *the set A*, not just at a single point $x \in A$

Theorem 4.4.5: A function $f : A \to \mathbb{R}$ is not *uniformly* continuous on *A* iff there exists a particular $\epsilon_0 > 0$ and two sequences (x_n) and (y_n) in *A* such that

 $\lim |x_n - y_n| = 0 \qquad \text{but} \qquad |f(x_n) - f(y_n)| \ge \epsilon_0 \text{ for all } n$

Note: There is no assumption that (x_n) and (y_n) converge, only that they get close together.

Theorem 4.4.7: If $f : K \to \mathbb{R}$ is continuous and *K* is compact, then *f* is uniformly continuous on *K*.

1