- 1. Let $A = (-\infty, 0) \bigcup (0, \infty)$. Define $f : A \to \mathbb{R}$ by $f(x) = \sin(\frac{1}{x})$
 - (a) Sketch a graph of f
 - (b) Use Corollary 4.2.5 to show $\lim_{x\to 0} f(x)$ does not exist

Hint: Consider $(x_n) = \left(\frac{1}{2\pi n}\right)$ and $(y_n) = \left(\frac{1}{2\pi n + \frac{\pi}{2}}\right)$

- 2. Prove that f(x) = 2x + 3 is continuous at x = 4
- 3. Prove that $g(x) = x^2$ is continuous at x = 4

Assume $f : A \to \mathbb{R}$ and $g : A \to \mathbb{R}$ are continuous at $c \in A$. Then

- (i) kf(x) is continuous for all $k \in \mathbb{R}$
- (ii) f(x) + g(x) is continuous at c
- (iii) f(x)g(x) is continuous at c
- (iv) f(x)/g(x) is continuous at c if the quotient is defined