1. Let $A=(-\infty, 0) \bigcup(0, \infty)$. Define $f: A \rightarrow \mathbb{R}$ by $f(x)=\sin \left(\frac{1}{x}\right)$
(a) Sketch a graph of f
(b) Use Corollary 4.2.5 to show $\lim _{x \rightarrow 0} f(x)$ does not exist

Hint: Consider $\left(x_{n}\right)=\left(\frac{1}{2 \pi n}\right)$ and $\left(y_{n}\right)=\left(\frac{1}{2 \pi n+\frac{\pi}{2}}\right)$
2. Prove that $f(x)=2 x+3$ is continuous at $x=4$
3. Prove that $g(x)=x^{2}$ is continuous at $x=4$

Theorem 4.3.4 (Algebraic Continuity Theorem)

Assume $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ are continuous at $c \in A$. Then
(i) $k f(x)$ is continuous for all $k \in \mathbb{R}$
(ii) $f(x)+g(x)$ is continuous at c
(iii) $f(x) g(x)$ is continuous at c
(iv) $f(x) / g(x)$ is continuous at c if the quotient is defined

