PROBLEM SET #6

Due Thursday, November 4, 2021 @ midnight Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Let
$$\mathcal{B} = \left\{ \vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_3 \right\}$$
 where $\vec{\mathbf{b}}_1 = \begin{bmatrix} 1\\ -5\\ 8 \end{bmatrix}, \vec{\mathbf{b}}_2 = \begin{bmatrix} -3\\ 2\\ 7 \end{bmatrix}, \vec{\mathbf{b}}_3 = \begin{bmatrix} 4\\ 1\\ -1 \end{bmatrix}$

(a) Show that \mathcal{B} is a basis for \mathbb{R}^3 .

(b) Find
$$[\vec{\mathbf{x}}]_{\mathcal{B}}$$
, the coordinates for $\vec{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ relative to the basis \mathcal{B} .

 (c) Let P_B = [**b**₁ **b**₂ **b**₃], the matrix whose columns are the basis B. This matrix is called the *change-of-coordinates* matrix from B to the standard basis for ℝ³. Using the values from (b), verify that P_B[**x**]_B = **x**.

(d) If
$$[\vec{\mathbf{u}}]_{\mathcal{B}} = \begin{bmatrix} -4\\ 63\\ 76 \end{bmatrix}$$
, use $P_{\mathcal{B}}$ to find $\vec{\mathbf{u}}$.

(e) If
$$\vec{\mathbf{v}} = \begin{bmatrix} 5\\4\\-7 \end{bmatrix}$$
, use $P_{\mathcal{B}}^{-1}$ to find $[\vec{\mathbf{v}}]_{\mathcal{B}}$

2. Let
$$A = \begin{bmatrix} 3 & 4 & 1 & -1 & 5 \\ 1 & 3 & -2 & 0 & 1 \\ -6 & -8 & -2 & 2 & -10 \\ 5 & 5 & 4 & -2 & 3 \end{bmatrix}$$

- (a) Find bases for col(*A*), nul(*A*), and row(*A*).
- (b) What is dim $nul(A^T)$? Why?
- (c) One of your answers in (a) is also a basis for $col(A^T)$. Which one? Why?
- 3. Suppose *A* is the matrix corresponding to an onto linear transformation $T : \mathbb{R}^7 \to \mathbb{R}^3$.
 - (a) What is the dimension of nul(*A*)? col(*A*)? Why?
 - (b) What is range(T)? Why?
 - (c) Describe $col(A^T)$ geometrically.