Problem Set \#6

Due Thursday, November 4, 2021 @ midnight
Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Let $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \overrightarrow{b_{3}}\right\}$ where $\overrightarrow{\mathbf{b}}_{1}=\left[\begin{array}{c}1 \\ -5 \\ 8\end{array}\right], \overrightarrow{\mathbf{b}_{2}}=\left[\begin{array}{c}-3 \\ 2 \\ 7\end{array}\right], \overrightarrow{\mathbf{b}}_{3}=\left[\begin{array}{c}4 \\ 1 \\ -1\end{array}\right]$
(a) Show that \mathcal{B} is a basis for \mathbb{R}^{3}.
(b) Find $[\overrightarrow{\mathbf{x}}]_{\mathcal{B}}$, the coordinates for $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ relative to the basis \mathcal{B}.
(c) Let $P_{\mathcal{B}}=\left[\begin{array}{lll}\overrightarrow{\mathbf{b}_{1}} & \overrightarrow{\mathbf{b}_{2}} & \overrightarrow{\mathbf{b}_{3}}\end{array}\right]$, the matrix whose columns are the basis \mathcal{B}.

This matrix is called the change-of-coordinates matrix from \mathcal{B} to the standard basis for \mathbb{R}^{3}.
Using the values from (b), verify that $P_{\mathcal{B}}[\overrightarrow{\mathbf{x}}]_{\mathcal{B}}=\overrightarrow{\mathbf{x}}$.
(d) If $[\overrightarrow{\mathbf{u}}]_{\mathcal{B}}=\left[\begin{array}{c}-4 \\ 63 \\ 76\end{array}\right]$, use $P_{\mathcal{B}}$ to find $\overrightarrow{\mathbf{u}}$.
(e) If $\overrightarrow{\mathbf{v}}=\left[\begin{array}{c}5 \\ 4 \\ -7\end{array}\right]$, use $P_{\mathcal{B}}^{-1}$ to find $[\overrightarrow{\mathbf{v}}]_{\mathcal{B}}$.
2. Let $A=\left[\begin{array}{ccccc}3 & 4 & 1 & -1 & 5 \\ 1 & 3 & -2 & 0 & 1 \\ -6 & -8 & -2 & 2 & -10 \\ 5 & 5 & 4 & -2 & 3\end{array}\right]$
(a) Find bases for $\operatorname{col}(A), \operatorname{nul}(A)$, and $\operatorname{row}(A)$.
(b) What is $\operatorname{dim} \operatorname{nul}\left(A^{T}\right)$? Why?
(c) One of your answers in (a) is also a basis for $\operatorname{col}\left(A^{T}\right)$. Which one? Why?
3. Suppose A is the matrix corresponding to an onto linear transformation $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{3}$.
(a) What is the dimension of $\operatorname{nul}(A) ? \operatorname{col}(A)$? Why?
(b) What is range (T) ? Why?
(c) Describe $\operatorname{col}\left(A^{T}\right)$ geometrically.

