Problem Set \#5

Due Thursday, October 28, 2021 @ midnight
Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Let $A=\left[\begin{array}{ccc}-6 & 24 & 47 \\ 12 & 8 & -45 \\ -12 & -24 & 31\end{array}\right]$
(a) Give a basis for $\operatorname{nul}(A)$ and describe $\operatorname{nul}(A)$ geometrically.
(b) Give a basis for $\operatorname{col}(A)$ and describe $\operatorname{col}(A)$ geometrically.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(\overrightarrow{\mathbf{x}})=A \overrightarrow{\mathbf{x}}$ where $A=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$.
(a) Find a basis for $\operatorname{ker}(T)$ and describe $\operatorname{ker}(T)$ geometrically.
(b) Find a basis for range (T) and describe range (T) geometrically.
(c) Describe T in geometric terms.
e.g. " T rotates the plane by $\frac{\pi}{3}$ radians counter-clockwise", or " T projects the plane onto the x-axis", etc.

To be clear, T doesn't do either of these, but these are examples of how you can describe T.
It may be useful to pick a few specific points in \mathbb{R}^{2} and see what their image is under T.
3. Show that $\mathcal{B}=\left\{4-31 t-7 t^{2}, 1+t, 5 t+t^{2}\right\}$ is not a basis for \mathbb{P}_{2}.
4. (a) Let $S=\left\{\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{\mathbf{k}}\right\}$ be a set of vectors in \mathbb{R}^{n} with $k<n$. Use a theorem from earlier in the semester to explain why S cannot be a basis for \mathbb{R}^{n}.
(b) Let $S=\left\{\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{\mathbf{k}}\right\}$ be a set of vectors in \mathbb{R}^{n} with $k>n$. Use a theorem from earlier in the semester to explain why S cannot be a basis for \mathbb{R}^{n}.
(These problems are essentially the same as Exercises 4.3.29 and 4.3.30 from the text, Lay's Linear Algebra, 4th edition)

