PROBLEM SET #4

Due Thursday, October 21, 2021 @ midnight Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates the plane by $\frac{\pi}{3}$ radians clockwise about the point (3, -4).

- (a) Explain why T is not a *linear* transformation.
- (b) Find the 3×3 matrix A that produces T using homogeneous coordinates.

(c) What is the image of the point $\begin{vmatrix} 4 \\ 2 \end{vmatrix}$ under *T*?

2. Let
$$A = \begin{bmatrix} 0 & 3 & 2 & 1 \\ 1 & 3 & 0 & 2 \\ 5 & 4 & 0 & 3 \\ 3 & 0 & 1 & 2 \end{bmatrix}$$

(a) Compute det(A) by hand using a cofactor expansion.You may pick which row or column you expand along.

- (b) Show that *A* is invertible.
- (c) What is $det(A^{-1})$? Note that you don't need to actually find A^{-1} !

3. Let <i>A</i> =	-5	3	9	8	2	11	-2	10
	-11	7	0	8	0	-8	6	-9
	-2	12	0	7	9	12	1	-5
	-2	3	3	6	4	4	-3	-6
	9	5	-1	-11	-9	2	-6	10
	9	5	-6	0	-11	7	-8	-11
	0	-2	12	-3	2	7	1	-9
	-5	-8	-5	4	10	-3	-11	9

Notice that *A* is given in Mathematica format on the Problem Sets page so that you can copy and paste into your Mathematica notebook.

- (a) What is the determinant of A? Please don't do this by hand!
- (b) Is A invertible? Why or why not?
- (c) Is the linear transformation $T : \mathbb{R}^8 \to \mathbb{R}^8$ defined by $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ one-one? Explain.

4. Let
$$H = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \mid a, b \le 0 \right\}$$
, the 3rd quadrant in \mathbb{R}^2

- (a) Is H closed under vector addition? Explain.
- (b) Is H closed under scalar multiplication? Explain.
- (c) Is *H* a subspace of \mathbb{R}^2 ? Explain.

5. Let $B = \begin{bmatrix} 3 & 6 & 15 \\ 6 & 12 & 29 \\ 3 & 6 & 13 \end{bmatrix}$

- (a) Give a non-zero vector in nul(*B*). Explain.
- (b) Give a non-zero vector in col(B). Explain.
- (c) Is $\vec{\mathbf{b}} = \begin{bmatrix} 4 \\ 7 \\ 2 \end{bmatrix}$ in col(*B*)? Explain.
- (d) Give a vector in \mathbb{R}^3 that is **not** in col(B). Explain.