Problem Set \#3

Due Thursday, September 23, 2021 @ midnight
Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Let T be a linear transformation defined by $T(\overrightarrow{\mathbf{x}})=A \overrightarrow{\mathbf{x}}$ where $A=\left[\begin{array}{rrr}2 & 4 & 0 \\ -1 & -2 & 9 \\ 2 & 4 & -9\end{array}\right]$.
(a) Let $\overrightarrow{\mathbf{x}}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$. What is $T(\overrightarrow{\mathbf{x}})$?
(b) Let $\overrightarrow{\mathbf{b}}_{1}=\left[\begin{array}{c}-2 \\ -17 \\ 16\end{array}\right]$. Is $\overrightarrow{\mathbf{b}_{1}}$ in the image of T ? That is, is there and $\overrightarrow{\mathbf{x}}$ where $T(\overrightarrow{\mathbf{x}})={\overrightarrow{b_{1}}}_{1}$? If so, is $\overrightarrow{\mathbf{x}}$ unique?
(c) Let $\overrightarrow{\mathbf{b}_{2}}=\left[\begin{array}{c}3 \\ 11 \\ -4\end{array}\right]$. Is $\overrightarrow{\mathbf{b}_{2}}$ in the image of T ? That is, is there and $\overrightarrow{\mathbf{x}}$ where $T(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{b}_{2}}$? If so, is $\overrightarrow{\mathbf{x}}$ unique?
(The problem is very similar to Exercises 1.8.3 from the text, Lay's Linear Algebra, 4th edition)
2. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(\overrightarrow{\mathbf{x}})=A \overrightarrow{\mathbf{x}}$ where $A=\left[\begin{array}{cccc}1 & 2 & 4 & -1 \\ 0 & 3 & -2 & 7 \\ 2 & -5 & -9 & 6\end{array}\right]$.
(a) Find all $\overrightarrow{\mathbf{x}}$ such that $T(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{0}}$.
(b) Is T one-one? Explain.
(c) Is T onto \mathbb{R}^{3} ? Explain.
3. For each transformation T, find the corresponding matrix A.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ reflects across the line $y=-x$ then rotates by $\frac{\pi}{3}$ radians counter-clockwise about the origin
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates by $\frac{\pi}{3}$ radians counter-clockwise about the origin then reflects across the line $y=-x$
(c) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ rotates about the x-axis counterclockwise by $\frac{\pi}{4}$ radians then projects onto the $x y$-plane.
4. Let $\overrightarrow{\mathbf{v}}_{\mathbf{1}}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ and $\overrightarrow{\mathbf{v}}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$. If T is a linear transformation such that $T\left(\overrightarrow{\mathbf{v}}_{\mathbf{1}}\right)=\left[\begin{array}{l}1 \\ 7\end{array}\right]$ and $T\left(\overrightarrow{\mathbf{v}}_{2}\right)=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$, find the corresponding matrix A where $T(\overrightarrow{\mathbf{x}})=A \overrightarrow{\mathbf{x}}$.

Hint: $T\left(x_{1} \overrightarrow{\mathbf{v}}_{\mathbf{1}}+x_{2} \overrightarrow{\mathbf{v}}_{\mathbf{2}}\right)=x_{1} T\left(\overrightarrow{\mathbf{v}}_{\mathbf{1}}\right)+x_{2} T\left(\overrightarrow{\mathbf{v}}_{\mathbf{2}}\right)$

