PROBLEM SET #3

Due Thursday, September 23, 2021 @ midnight Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Let *T* be a linear transformation defined by $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ where $A = \begin{bmatrix} 2 & 4 & 0 \\ -1 & -2 & 9 \\ 2 & 4 & -9 \end{bmatrix}$.

(a) Let
$$\vec{\mathbf{x}} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
. What is $T(\vec{\mathbf{x}})$?

(b) Let $\vec{\mathbf{b}_1} = \begin{bmatrix} -2\\ -17\\ 16 \end{bmatrix}$. Is $\vec{\mathbf{b}_1}$ in the image of *T*? That is, is there and $\vec{\mathbf{x}}$ where $T(\vec{\mathbf{x}}) = \vec{\mathbf{b}_1}$? If so, is $\vec{\mathbf{x}}$ unique?

(c) Let
$$\vec{\mathbf{b}}_2 = \begin{bmatrix} 3\\11\\-4 \end{bmatrix}$$
. Is $\vec{\mathbf{b}}_2$ in the image of *T*? That is, is there and $\vec{\mathbf{x}}$ where $T(\vec{\mathbf{x}}) = \vec{\mathbf{b}}_2$? If so, is $\vec{\mathbf{x}}$ unique?

(The problem is very similar to Exercises 1.8.3 from the text, Lay's Linear Algebra, 4th edition)

- 2. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ where $A = \begin{bmatrix} 1 & 2 & 4 & -1 \\ 0 & 3 & -2 & 7 \\ 2 & -5 & -9 & 6 \end{bmatrix}$.
 - (a) Find all $\vec{\mathbf{x}}$ such that $T(\vec{\mathbf{x}}) = \vec{\mathbf{0}}$.
 - (b) Is *T* one-one? Explain.
 - (c) Is T onto \mathbb{R}^3 ? Explain.

3. For each transformation *T*, find the corresponding matrix *A*.

- (a) $T : \mathbb{R}^2 \to \mathbb{R}^2$ reflects across the line y = -x then rotates by $\frac{\pi}{3}$ radians counter-clockwise about the origin (b) $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates by $\frac{\pi}{3}$ radians counter-clockwise about the origin then reflects across the line y = -x
- (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ rotates about the *x*-axis counterclockwise by $\frac{\pi}{4}$ radians then projects onto the *xy*-plane.
- 4. Let $\vec{\mathbf{v}_1} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and $\vec{\mathbf{v}_2} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. If *T* is a linear transformation such that $T(\vec{\mathbf{v}_1}) = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$ and $T(\vec{\mathbf{v}_2}) = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$, find the corresponding matrix *A* where $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

Hint:
$$T(x_1\vec{\mathbf{v}_1} + x_2\vec{\mathbf{v}_2}) = x_1T(\vec{\mathbf{v}_1}) + x_2T(\vec{\mathbf{v}_2})$$