Problem Set \#2

Due Thursday, September 16, 2021 @ midnight Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Consider the augmented matrix $\left[\begin{array}{rrr|r}44 & 89 & 6 & -357 \\ -16 & -32 & -2 & 130 \\ 10 & 21 & 2 & -80\end{array}\right]$
(a) This augmented matrix corresponds to a system of linear equations in three variables. What is the system of equations?
(b) This augmented matrix corresponds to a vector equations in three variables. What is the vector equation?
(c) This augmented matrix corresponds to a matrix equation $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$. What are A and $\overrightarrow{\mathbf{b}}$?
(d) Solve the system, and give your answer as a solution to the system from part (a).
2. Let $A=\left[\begin{array}{cccc}1 & 3 & 0 & 2 \\ -2 & -6 & 1 & -7 \\ 3 & 9 & -4 & 18 \\ 1 & 3 & 1 & -1\end{array}\right]$ and $\overrightarrow{\mathbf{b}}=\left[\begin{array}{c}7 \\ -23 \\ 57 \\ -2\end{array}\right]$.
(a) Write the general solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathrm{b}}$ in parametric form.
(b) Are the columns of A linear independent or linearly dependent? Explain.
(c) Do the columns of A span \mathbb{R}^{4} ? Explain.
(d) Does $\overrightarrow{\mathrm{b}}$ lie in the span of the columns of A ? Explain.
3. Each statement is either true (in all cases) or false (for at least one example). If false, construct a specific counterexample to show that the statement is not always true. If a statement is true, give a justification. (One specific example cannot explain why a statement is always true.)
(a) The columns of every 3×5 matrix A are linearly dependent.
(b) If $\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{\mathbf{3}}$ are in \mathbb{R}^{3} and $\overrightarrow{\mathbf{v}}_{3}$ is not a linear combination of $\overrightarrow{\mathbf{v}}_{\mathbf{1}}$ and $\overrightarrow{\mathbf{v}}_{2}$ then $\left\{\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\}$ is linearly independent.
(c) If $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are linear independent and $\overrightarrow{\mathbf{w}}$ lies in $\operatorname{Span}\{\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}\}$, then $\{\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}\}$ is linearly dependent.
(The problem is very similar to Exercises 1.7.33-38 from the text, Lay's Linear Algebra, 4th edition)
