Problem Set #2

Due Thursday, September 16, 2021 @ midnight Submit as single pdf file to onCourse

Remember to review the Guidelines for Problem Sets on the course webpage.

	44	89	6	-357
1. Consider the augmented matrix	-16	-32	-2	130
	10	21	2	-80

- (a) This augmented matrix corresponds to a system of linear equations in three variables. What is the system of equations?
- (b) This augmented matrix corresponds to a vector equations in three variables. What is the vector equation?
- (c) This augmented matrix corresponds to a matrix equation $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$. What are A and $\vec{\mathbf{b}}$?
- (d) Solve the system, and give your answer as a solution to the system from part (a).

2. Let $A = \begin{bmatrix} 1 & 3 & 0 & 2 \\ -2 & -6 & 1 & -7 \\ 3 & 9 & -4 & 18 \\ 1 & 3 & 1 & -1 \end{bmatrix}$ and $\vec{\mathbf{b}} = \begin{bmatrix} 7 \\ -23 \\ 57 \\ -2 \end{bmatrix}$.

- (a) Write the general solution to $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ in parametric form.
- (b) Are the columns of A linear independent or linearly dependent? Explain.
- (c) Do the columns of A span \mathbb{R}^4 ? Explain.
- (d) Does $\vec{\mathbf{b}}$ lie in the span of the columns of *A*? Explain.
- 3. Each statement is either true (in all cases) or false (for at least one example). If false, construct a specific counterexample to show that the statement is not always true. If a statement is true, give a justification. (One specific example cannot explain why a statement is always true.)
 - (a) The columns of every 3×5 matrix *A* are linearly dependent.
 - (b) If $\vec{v_1}, \vec{v_2}, \vec{v_3}$ are in \mathbb{R}^3 and $\vec{v_3}$ is *not* a linear combination of $\vec{v_1}$ and $\vec{v_2}$ then $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is linearly independent.
 - (c) If \vec{u} and \vec{v} are linear independent and \vec{w} lies in Span $\{\vec{u}, \vec{v}\}$, then $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent.

(The problem is very similar to Exercises 1.7.33-38 from the text, Lay's Linear Algebra, 4th edition)