From Lay, Section 1.9

THEOREM 12

- Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:
 - a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b. T is one-to-one if and only if the columns of A are linearly independent.

From Lay, Section 2.1

THEOREM 2

- Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
 - a. A(BC) = (AB)C
 - b. A(B+C) = AB + AC
 - c. (B+C)A = BA + CA
- d. r(AB) = (rA)B = A(rB)for any scalar r

e.
$$I_m A = A = A I_n$$

(associative law of multiplication)

- (left distributive law)
 - (right distributive law)

(identity for matrix multiplication)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 0 \\ 3 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix}$, and $D = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 1 & 3 \end{bmatrix}$

- 1. Compute AB and BA
- 2. Compute AC and BC
- 3. Compute AD and DA
- 4. What interesting properties of matrix multiplication do these examples demonstrate?

Let
$$F = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 3 \\ 0 & 4 & -7 \end{bmatrix}$$
, $G = \begin{bmatrix} 3 & -2 & 4 \\ 7 & 12 & 8 \\ 16 & 2 & 3 \end{bmatrix}$, $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Feel free to use today's Mathematica notebook for these computations.

- 5. Find F^{-1} and G^{-1}
- 6. Compare the following products: $F^{-1}G^{-1}$, $G^{-1}F^{-1}$, $(FG)^{-1}$, $(GF)^{-1}$
- 7. Compare $(FG)^T$, F^TG^T , and G^TF^T
- 8. Find $(F^{T})^{-1}$
- 9. Compare F, E_1F , and E_2E_1F

What general observations can you make from your computations?