Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

Let
$$\vec{\mathbf{e_1}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\vec{\mathbf{e_2}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

For each matrix A.

- (a) Find $T(\vec{e_1})$, $T(\vec{e_2})$, and $T(\vec{u})$
- (b) Plot these vectors in \mathbb{R}^2
- (c) Give a geometric description of T.

$$\mathbf{1}.\ A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

1.
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 2. $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ **3**. $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$