$$
A=\left[\begin{array}{rrr}
1 & 2 & -3 \\
2 & -3 & 4 \\
-1 & 3 & 2
\end{array}\right] \quad \operatorname{REF}(A)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The columns of A are linearly independent
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Hmm, I think I need more information

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

The vectors $\overrightarrow{\mathbf{v}_{1}}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right], \overrightarrow{\mathbf{v}_{2}}=\left[\begin{array}{r}0 \\ -1 \\ 6\end{array}\right], \overrightarrow{\mathbf{v}_{3}}=\left[\begin{array}{r}-2 \\ -4 \\ 21\end{array}\right]$ lie in the same plane in \mathbb{R}^{3}
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Hmm , I think I need more information

If A is a 4×5 matrix the columns of A are linearly independent
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Hmm, I think I need more information

If A is a 5×4 matrix the columns of A are linearly independent
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Hmm , I think I need more information

