
From Lay, Section 1.4

��� The Matrix Equation Ax D b ��

The	reduced	matrix	in	Example	3	provides	a	description	of	all b for	which	the
equation Ax D b is consistent: The	entries	in b must	satisfy

b1 ! 1
2
b2 C b3 D 0

This	is	the	equation	of	a	plane	through	the	origin	in R3. The	plane	is	the	set	of	all	linear
combinations	of	the	three	columns	of A. See	Fig. 1.

The	equation Ax D b in	Example	3	fails	to	be	consistent	for	all b because	the
echelon	form	of A has	a	row	of	zeros. If A had	a	pivot	in	all	three	rows, we	would
not	care	about	the	calculations	in	the	augmented	column	because	in	this	case	an	echelon
form	of	the	augmented	matrix	could	not	have	a	row	such	as Œ 0 0 0 1 !.

In	the	next	theorem, the	sentence	“The	columns	ofA spanRm”	means	that every b in
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The	columns	of
A D Œ a1 a2 a3 ! span	a	plane
through 0.

Rm is	a	linear	combination	of	the	columns	ofA. In	general, a	set	of	vectors fv1; : : : ; vpg
in Rm spans (or generates) Rm if 	every	vector	 in Rm is 	a 	 linear	combination	of
v1; : : : ; vp—that	is, if Span fv1; : : : ; vpg D Rm.

5)&03&. � LetA be	anm " nmatrix. Then	the	following	statements	are	logically	equivalent.
That	is, for	a	particular A, either	they	are	all	true	statements	or	they	are	all	false.

a. For	each b in Rm, the	equation Ax D b has	a	solution.
b. Each b in Rm is	a	linear	combination	of	the	columns	of A.
c. The	columns	of A span Rm.
d. A has	a	pivot	position	in	every	row.

Theorem	4	is	one	of	the	most	useful	theorems	in	this	chapter. Statements	(a),
(b), and	(c)	are	equivalent	because	of	the	definition	of Ax and	what	it	means	for	a
set	of	vectors	to	span Rm. The	discussion	after	Example	3	suggests	why	(a)	and	(d)
are	equivalent; a	proof	is	given	at	the	end	of	the	section. The	exercises	will	provide
examples	of	how	Theorem	4	is	used.

Warning: Theorem	4	is	about	a coefficient	matrix, not	an	augmented	matrix. If	an
augmented	matrix Œ A b ! has	a	pivot	position	in	every	row, then	the	equation Ax D b
may	or	may	not	be	consistent.

Computation of Ax

The	calculations	in	Example	1	were	based	on	the	definition	of	the	product	of	a	matrix A
and	a	vector x. The	following	simple	example	will	lead	to	a	more	efficient	method	for
calculating	the	entries	in Ax when	working	problems	by	hand.

&9".1-& � Compute Ax, where A D
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Answer True / False

Let

v⃗1 = ⟨1, 3, 18, 2⟩
v⃗2 = ⟨2,−1, 9, 0⟩
v⃗3 = ⟨3, 2,−4, 1⟩
v⃗4 = ⟨4, 7, 1, 3⟩

and A =


1 3 2

−2 1 4
6 2 1
5 −17 32


1. The columns of A span R4

2. The vectors {v⃗1, v⃗2, v⃗3, v⃗4} span R4

3. Let B = [v⃗1 v⃗2 v⃗3 v⃗4] and b⃗ =
⟨
72,−128, π, e−411

⟩
The matrix equation Bx⃗ = b⃗ has a unique solution

4. There exists b⃗ ∈ R4 such that Ax⃗ = b⃗ has infinitely many solutions.
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5. Let A =

[
1 3 5

−2 −6 7

]
(a) Find all solutions to the homogeneous system Ax⃗ = 0⃗.

(b) Find all solutions to Ax⃗ = b⃗ where b⃗ =

[
−3
9

]
.

6. Find all solutions to Ax⃗ = b⃗ where

A =

 1 2 3 5
2 4 3 1

−1 −2 −6 −14

 and b⃗ =

−7
−4
17


7. Create an example of a matrix A and vector b⃗ such that Ax⃗ = b⃗ has infinitely
many solutions and Ax⃗ = 0⃗ has only the trivial solution.
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