From Lay, Section 1.2

DEFINITION

A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- **2.** Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in **reduced echelon form** (or **reduced row echelon form**):

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

Echelon Form				Reduced Echelon Form					
3	-6	0	4		[1	-2	0	0	
0	-6 0 0	5	3		0	-2 0	1	0	
0	0	0	1		0	0	0	1	

1 0 3 0 3 5 0 2 1

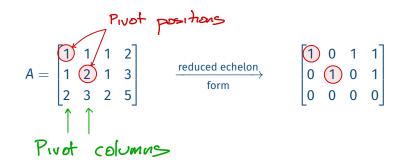
- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmm...

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmm...

From Lay, Section 1.2

DEFINITION

A **pivot position** in a matrix *A* is a location in *A* that corresponds to a leading 1 in the reduced echelon form of *A*. A **pivot column** is a column of *A* that contains a pivot position.



Variables that correspond to a pivot column are called **basic variables**, and variables that do *not* correspond to a pivot column are called **free variables**.

Augmented matrix from #6 on Tuesday:

x and y are basic variables

z is a free variable

1. Find the general solutions of the system whose augmented matrix is

$$\begin{bmatrix} 2 & -8 & 0 & 1 & -1 & 4 \\ -4 & 16 & 3 & -2 & 17 & -14 \\ 6 & -24 & 0 & 5 & 3 & 16 \end{bmatrix}$$

2. Let $\vec{u} = \langle 1, 2, -1 \rangle$, $\vec{v} = \langle -3, 1, 5 \rangle$

(a) Does $\vec{\mathbf{w}} = \langle 7, 0, 2 \rangle$ lie in Span $\{\vec{\mathbf{u}}, \vec{\mathbf{v}}\}$?

(b) What does this tell you about the lines

$$x - 3y = 7$$
, $2x + y = 0$, and $-x + 5y = 2$?