A vector space is a nonempty set of objects V, called vectors, which have two operations defined: addition of vectors and multiplication by scalars (real numbers), subject to the ten axioms listed below.
The axioms must hold for all vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and for all scalars c and d.

1. $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}} \in V$
2. $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$
3. $(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})+\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}}+(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})$
4. There exists a vector $\overrightarrow{\mathbf{0}} \in V$ such that $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{u}}$
5. For all $\overrightarrow{\mathbf{u}} \in V$, there is a vector $-\overrightarrow{\mathbf{u}} \in V$ such that $\overrightarrow{\mathbf{u}}+(-\overrightarrow{\mathbf{u}})=\overrightarrow{\mathbf{0}}$
6. $c \vec{u} \in V$
7. $c(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})=c \overrightarrow{\mathbf{u}}+c \overrightarrow{\mathbf{v}}$
8. $(c+d) \overrightarrow{\mathbf{u}}=c \overrightarrow{\mathbf{u}}+d \overrightarrow{\mathbf{u}}$
9. $c(d \overrightarrow{\mathbf{u}})=(c d) \overrightarrow{\mathbf{u}}$
10. $1 \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}$

RATLIFF8102

b.socrative.com/login/student/ or Socrative app
$H=$ line in the plane through the origin and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a subspace of $V=\mathbb{R}^{2}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

$H=$ the $1^{\text {st }}$ quadrant in the plane is a subspace of $V=\mathbb{R}^{2}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

$H=\mathbb{P}_{2}$ is a subspace of $V=\mathbb{P}_{3}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

Let $\overrightarrow{\mathbf{v}_{\mathbf{1}}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\overrightarrow{\mathbf{v}_{\mathbf{2}}}=\left[\begin{array}{c}-2 \\ 1 \\ -5\end{array}\right]$. Then $H=\operatorname{Span}\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \overrightarrow{\mathbf{v}_{\mathbf{2}}}\right\}$ is a subspace of $V=\mathbb{R}^{3}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app
$H=$ the $1^{\text {st }}$ and $3^{\text {rd }}$ quadrant in the plane is a subspace of $V=\mathbb{R}^{2}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

Let $A=\left[\begin{array}{cccc}1 & 0 & -2 & 3 \\ 0 & 1 & 2 & -1\end{array}\right]$
Then $H=\left\{\overrightarrow{\mathbf{x}} \in \mathbb{R}^{4} \mid A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}\right\}$ is a subspace of $V=\mathbb{R}^{4}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

