A vector space is a nonempty set of objects \vee , called *vectors*, which have two operations defined: *addition* of vectors and *multiplication by scalars* (real numbers), subject to the ten axioms listed below.

The axioms must hold for all vectors \vec{u} , \vec{v} , $\vec{w} \in V$ and for all scalars c and d.

1.
$$\vec{\mathbf{u}} + \vec{\mathbf{v}} \in V$$

2.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

3.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

4. There exists a vector $\vec{\mathbf{0}} \in V$ such that $\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$

5. For all $\vec{\mathbf{u}} \in V$, there is a vector $-\vec{\mathbf{u}} \in V$ such that $\vec{\mathbf{u}} + (-\vec{\mathbf{u}}) = \vec{\mathbf{0}}$

6.
$$c\vec{\mathbf{u}} \in V$$

7.
$$c(\vec{\mathbf{u}} + \vec{\mathbf{v}}) = c\vec{\mathbf{u}} + c\vec{\mathbf{v}}$$

8.
$$(c+d)\vec{\mathbf{u}} = c\vec{\mathbf{u}} + d\vec{\mathbf{u}}$$

9.
$$c(d\vec{\mathbf{u}}) = (cd)\vec{\mathbf{u}}$$

10.
$$1\vec{u} = \vec{u}$$

$$H = \text{line in the plane through the origin and } \vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 is a subspace of $V = \mathbb{R}^2$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

H =the 1st quadrant in the plane is a subspace of $V = \mathbb{R}^2$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

$$H=\mathbb{P}_2$$
 is a subspace of $V=\mathbb{P}_3$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

Let
$$\vec{\mathbf{v_1}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{\mathbf{v_2}} = \begin{bmatrix} -2 \\ 1 \\ -5 \end{bmatrix}$. Then $H = \operatorname{Span} \{\vec{\mathbf{v_1}}, \vec{\mathbf{v_2}}\}$ is a subspace of $V = \mathbb{R}^3$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

 $H = \text{the 1}^{\text{st}}$ and 3^{rd} quadrant in the plane is a subspace of $V = \mathbb{R}^2$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

Let
$$A = \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 2 & -1 \end{bmatrix}$$

Then
$$H = \left\{ \vec{\mathbf{x}} \in \mathbb{R}^4 \mid A\vec{\mathbf{x}} = \vec{\mathbf{0}} \right\}$$
 is a subspace of $V = \mathbb{R}^4$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .