1. (a) Find the best fit line y = mx + b for the data points

Х	1	1.5	2	3	3.1	3.2	4
у	8	9	15	10	18	23	19

(b) Use the site

https://www.socscistatistics.com/tests/regression/ to find the least squares regression line for this data. Compare your answer to part (a).

2. Let
$$A = \begin{bmatrix} 1 & -18 \\ -3 & 4 \end{bmatrix}$$
, $\vec{\mathbf{v}_1} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $\vec{\mathbf{v}_2} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\lambda_1 = 10$, $\lambda_2 = -5$
(a) Show that A has eigenvalues λ_1, λ_2 with corresponding eigenvectors $\vec{\mathbf{v}_1}, \vec{\mathbf{v}_2}$
(b) Let $P = [\vec{\mathbf{v}_1} \ \vec{\mathbf{v}_2}]$, the 2 × 2 matrix with columns $\vec{\mathbf{v}_1}$ and $\vec{\mathbf{v}_2}$. Compute AP
(c) Let D be the 2 × 2 diagonal matrix with λ_1 and λ_2 on the diagonal. Compute PD
(d) Compute PDP⁻¹. Ponder

Math 221 Linear Algebra (T. Ratliff)

November 18, 2021