Let
$$\vec{\mathbf{u_1}} = \begin{bmatrix} -1 \\ -3 \\ -2 \end{bmatrix}$$
, $\vec{\mathbf{u_2}} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$ $\vec{\mathbf{u_3}} = \begin{bmatrix} 3 \\ -5 \\ 6 \end{bmatrix}$, and $\vec{\mathbf{y}} = \begin{bmatrix} 9 \\ -8 \\ 4 \end{bmatrix}$

- 1. Verify that $\mathcal{B} = \left\{\vec{u_1}, \vec{u_2}, \vec{u_3}\right\}$ is an orthogonal basis for \mathbb{R}^3
- 2. Find $\hat{y_1}$, the orthogonal projection of \vec{y} onto $\vec{u_1}$ $\hat{y_2}$, the orthogonal projection of \vec{y} onto $\vec{u_2}$ $\hat{y_3}$, the orthogonal projection of \vec{y} onto $\vec{u_3}$
- 3. Write \vec{y} as a linear combination of $\vec{u_1}, \vec{u_2}, \vec{u_3}$
- 4. Form the matrix $A = \begin{bmatrix} \vec{\mathbf{u_1}} & \vec{\mathbf{u_2}} & \vec{\mathbf{u_3}} \end{bmatrix}$, and calculate $A^T A$