- 1. Solve the following discrete log problems:
 - (a) $11^x \equiv 9 \mod 31$
 - (b) $3^x \equiv 24 \mod 31$
 - (c) $2^x \equiv 27 \mod 31$

2. Let p = 11

- (a) What are the possible orders for elements in \mathbb{Z}_p^* ?
- (b) Find a generator α of \mathbb{Z}_p^* .
- (c) Fill in the following table:

k	α^k	mod p	$\operatorname{ord}(\alpha^k)$
1			
2			
÷			
10			

- (d) For which values of k is α^k a generator?
- (e) How are the values in your last answer related to $\phi(p)$?
- (f) How many generators does \mathbb{Z}_p^* have?
- Repeat the previous problem with *p* = 23. Note that your table will have 22 rows.
 The Mathematica command MultiplicativeOrder[] might be handy.
- 4. Show that p = 1 786 511 is a poor choice as the modulus for Diffie-Hellman Key Exchange. The Mathematica commands PrimeQ[] and FactorInteger[] may be useful.
- 5. Show that $p = 1\,786\,553$ is a reasonable choice for DHKE and find an appropriate value α .