1. Solve the following discrete log problems:
(a) $11^{x} \equiv 9 \bmod 31$
(b) $3^{x} \equiv 24 \bmod 31$
(c) $2^{x} \equiv 27 \bmod 31$
2. Let $p=11$
(a) What are the possible orders for elements in \mathbb{Z}_{p}^{*} ?
(b) Find a generator α of \mathbb{Z}_{p}^{*}.
(c) Fill in the following table:

k	α^{k}	$\bmod p$	$\operatorname{ord}\left(\alpha^{k}\right)$
1			
2			
\vdots			
10			

(d) For which values of k is α^{k} a generator?
(e) How are the values in your last answer related to $\phi(p)$?
(f) How many generators does \mathbb{Z}_{p}^{*} have?
3. Repeat the previous problem with $p=23$. Note that your table will have 22 rows.

The Mathematica command MultiplicativeOrder[] might be handy.
4. Show that $p=1786511$ is a poor choice as the modulus for Diffie-Hellman Key Exchange. The Mathematica commands PrimeQ[] and FactorInteger[] may be useful.
5. Show that $p=1786553$ is a reasonable choice for DHKE and find an appropriate value α.

