Addition on elliptic curve $E: Y^{2}=X^{3}+A X+B$

Let P_{1} and P_{2} be two points on E

- If $P_{1}=\mathcal{O}$, then $P_{1}+P_{2}=P_{2}$

If $P_{2}=\mathcal{O}$, then $P_{1}+P_{2}=P_{1}$

- Otherwise, write $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$
- If $x_{1}=x_{2}$ and $y_{1}=-y_{2}$, then $P_{1}=-P_{2}$ in E and $P_{1}+P_{2}=\mathcal{O}$
- Otherwise, define

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2} \\ \frac{3 x_{1}^{2}+A}{2 y_{1}} & \text { if } P_{1}=P_{2}\end{cases}
$$

and let

$$
x_{3}=\lambda^{2}-x_{1}-x_{2} \text { and } y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
$$

Then $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$

