1. Let $f(x)=e^{x}$
(a) Find the Maclaurin series for $f(x)$
(b) Take the derivative of your series. What do you notice?
2. Let $g(x)=\ln (x)$.
(a) Find the Taylor series for $g(x)$ at $c=1$
(b) Use your series to approximate $\ln (2)$.
8.8.. 26 Use the Taylor series for e^{x} to create the Taylor series for $f(x)=e^{-x}$
8.8.31 Approximate the value of

$$
\int_{0}^{\sqrt{\pi}} \sin \left(x^{2}\right) d x
$$

by using the first four nonzero terms of the integrand's Taylor series

Use series to approximate the value of the following integrals

 accurate within 0.001 .1. $\int_{0}^{1} \cos \left(x^{3}\right) d x$
2. $\int_{0}^{1 / 4} \frac{1}{1+x^{4}} d x$

Hint: $\frac{1}{1+x^{4}}=\frac{1}{1-\left(-x^{4}\right)}$
3. $\int_{0}^{1} x e^{x^{3}} d x$

