Consider the power series

$$
P(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k 2^{k}}=\frac{x}{2}+\frac{x^{2}}{2 \cdot 2^{2}}+\frac{x^{3}}{3 \cdot 2^{3}}+\cdots
$$

1. Does $P(x)$ converge or diverge at $x=1$? What does this tell you about the radius of convergence of $P(x)$?
2. Does $P(x)$ converge or diverge at $x=-1$? What does this tell you about the radius of convergence of $P(x)$?
3. Does $P(x)$ converge or diverge at $x=2$?

What does this tell you about the radius of convergence of $P(x)$?
4. Does $P(x)$ converge or diverge at $x=-2$?

What does this tell you about the radius of convergence of $P(x)$?
5. What is the interval of convergence of $P(x)$?

