Determine whether the series converges or diverges.

 If a series converges, approximate its value accurate within 0.05$$
\begin{array}{ll}
\text { 1. } \sum_{k=1}^{\infty}(-1)^{k+1} \frac{3 k^{2}}{7 k^{2}+k+1} & \text { 4. } \sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{2^{k}} \\
\text { 2. } \sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{\sqrt[3]{k}} & \text { 5. } \sum_{k=1}^{\infty} \frac{(k+1)!}{(k+2)!} \\
\text { 3. } \sum_{k=5}^{\infty} \frac{1}{\sqrt[3]{k}+1} & \text { 6. } \sum_{k=5}^{\infty}(-1)^{k} \frac{k!}{(k+1)!}
\end{array}
$$

