1. Find the volume below the surface $z=1+x+y$ and above the region R in the $x y$-plane bounded by the graphs $x=1, y=0, y=x^{2}$.
2. Find the volume below the surface $z=\cos \left(x^{2}\right)$ and above the triangle R in the $x y$-plane bounded by the x-axis, the line $x=1$, and the line $y=x$.
3. Evaluate $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin (y)}{y} d y d x$ by reversing the order of integration.
4. Evaluate $\iint_{R} 2 x-y d A$ where R is the upper half of the circle with center at the origin and radius 2.

Evaluate each integral

1. $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x$
2. $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y$
3. $\int_{0}^{1} \int_{0}^{1} \sin \left(e^{x}\right) d x d y+\int_{1}^{e} \int_{\ln (y)}^{1} \sin \left(e^{x}\right) d x d y$
