Gram-Schmidt Algorithm

Suppose $\mathcal{B}=\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \overrightarrow{\mathbf{v}_{\mathbf{2}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{n}}}\right\}$ is the basis for an subspace $S \subset \mathbb{R}^{m}$.
Form the set $\mathcal{B}^{*}=\left\{{\overrightarrow{\mathbf{v}_{\mathbf{1}}}}^{*},{\overrightarrow{\mathbf{v}_{\mathbf{2}}}}^{*}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{n}}}\right\}$ by

$$
\begin{aligned}
& {\overrightarrow{\mathbf{v i n}_{\mathbf{1}}}}^{*}=\overrightarrow{\mathbf{v}_{\mathbf{1}}} \\
& {\overrightarrow{\mathbf{v}_{\mathbf{2}}}}^{*}=\overrightarrow{\mathbf{v}_{\mathbf{2}}}-\frac{\overrightarrow{\mathbf{v}_{\mathbf{2}}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{1}}}}{\overrightarrow{\mathbf{v}_{\mathbf{1}}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{1}}}}{ }^{*} \overrightarrow{\mathbf{v}}_{\mathbf{1}}{ }^{*} \\
& \overrightarrow{\mathbf{v}_{\mathbf{3}}} \overrightarrow{ }^{*}=\overrightarrow{\mathbf{v}_{\mathbf{3}}}-\frac{\overrightarrow{\mathbf{v}_{3}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{2}}}}{\overrightarrow{\mathbf{v}_{\mathbf{2}}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{2}}}} \overrightarrow{\mathbf{v}}^{*}{ }^{*}-\frac{\overrightarrow{\mathbf{v}_{3}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{1}}}}{} \overrightarrow{\mathbf{v}}^{*} \cdot \overrightarrow{\mathbf{v}_{1}} \overrightarrow{\mathbf{v}}_{\mathbf{1}}{ }^{*} \\
& \overrightarrow{\mathbf{v}}_{\mathbf{i}}^{*}=\overrightarrow{\mathbf{v}_{\mathbf{i}}}-\sum_{j=1}^{i-1} \mu_{i, j} \overrightarrow{\mathbf{v}}_{\mathbf{j}}^{*} \quad \text { where } \mu_{i, j}=\frac{\overrightarrow{\mathbf{v}_{\mathbf{i}}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{j}}}}{\overrightarrow{\mathbf{v}_{\mathbf{j}}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{j}}}}, \quad 1 \leq j<i
\end{aligned}
$$

Then \mathcal{B}^{*} is an orthogonal basis for S.

Proposition 7.66 (Gaussian Lattice Reduction)

Let $L \subset \mathbb{R}^{2}$ be a lattice with basis $\mathcal{B}=\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \overrightarrow{\mathbf{v}_{\mathbf{2}}}\right\}$.

The following algorithm terminates and yields a good basis for L :

- If $\left\|\overrightarrow{\mathbf{v}_{\mathbf{2}}}\right\|<\left\|\overrightarrow{\mathbf{v}_{\mathbf{1}}}\right\|$ then swap $\overrightarrow{\mathbf{v}_{\mathbf{1}}}$ and $\overrightarrow{\mathbf{v}_{\mathbf{2}}}$
- Compute $m=\left\lvert\, \begin{aligned} & \overrightarrow{\mathbf{v}_{\mathbf{1}}} \cdot \overrightarrow{\mathbf{v}_{\mathbf{2}}} \\ & \overrightarrow{\mathbf{\mathbf { v } _ { \mathbf { 1 } }} \cdot \overrightarrow{\mathbf{v}_{\mathbf{1}}}}\end{aligned}\right.$
- If $m=0$, then $\mathcal{B}^{\prime}=\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \overrightarrow{\mathbf{v}_{\mathbf{2}}}\right\}$ is a good basis
- If $m \neq 0$, then assign $\overrightarrow{\mathbf{v}_{\mathbf{2}}}=\overrightarrow{\mathbf{v}_{\mathbf{2}}}-m \overrightarrow{\mathbf{v}_{\mathbf{1}}}$ and repeat the loop

When the loop terminates, $\overrightarrow{\mathbf{v}_{\mathbf{1}}}$ is the shortest vector in L so this solves the SVP.

Further, \mathcal{B}^{\prime} is quasi-orthogonal, where θ, the angle between $\overrightarrow{\mathbf{v}_{\mathbf{1}}}$ and $\overrightarrow{\mathbf{v}_{\mathbf{2}}}$, satisfies $\frac{\pi}{3} \leq \theta \leq \frac{2 \pi}{3}$

Definition: LLL Reduced Basis

Let $\mathcal{B}=\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{n}}}\right\}$ be a basis for the lattice $L \subset \mathbb{R}^{n}$ and let $\mathcal{B}^{*}=\left\{{\overrightarrow{\mathbf{v}_{\mathbf{1}}}}^{*}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{n}}}\right.$. $\}$ be the Gram-Schmidt basis for \mathcal{B}.

Then \mathcal{B} is said to be LLL reduced if it satisfies the two conditions:

- Size condition: $\quad\left|\mu_{i, j}\right| \leq \frac{1}{2}$ for all $1 \leq j<i \leq n$
- Lovàsz Condition: $\left\|\overrightarrow{\mathbf{v}}_{\mathbf{i}}^{*}\right\|^{2} \geq\left(\frac{3}{4}-\mu_{i, i-1}^{2}\right)\left\|\mathbf{v}_{\mathbf{i}-\mathbf{1}}{ }^{*}\right\|^{2}$ for all $1<i \leq n$

Theorems 7.69 \& 7.71

Thm 7.69: Let $L \subset \mathbb{R}^{n}$ be a lattice of dimension n with an LLL reduced basis $\mathcal{B}=\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{n}}}\right\}$. Then

$$
\begin{aligned}
& \prod_{i=1}^{n}\left\|\overrightarrow{\mathbf{v}_{\mathbf{i}}}\right\| \leq 2^{n(n-1) / 4} \operatorname{det}(L) \\
&\left\|\overrightarrow{\mathbf{v}_{\mathbf{j}}}\right\| \leq 2^{(i-1) / 2}\left\|\overrightarrow{\mathbf{v}_{\mathbf{i}}^{*}}\right\| \quad \text { for all } 1 \leq j \leq i \leq n \\
&\left\|\overrightarrow{\mathbf{v}_{\mathbf{1}}}\right\| \leq 2^{(n-1) / 2} \min _{\overrightarrow{\mathbf{0}} \neq \overrightarrow{\mathbf{v}} \in L}\|\overrightarrow{\mathbf{v}}\| \\
&
\end{aligned}
$$

Theorems 7.69 \& 7.71

Thm 7.69: Let $L \subset \mathbb{R}^{n}$ be a lattice of dimension n with an LLL reduced basis $\mathcal{B}=\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{n}}}\right\}$. Then

$$
\begin{aligned}
& \prod_{i=1}^{n}\left\|\overrightarrow{\mathbf{v}_{\mathbf{i}}}\right\| \leq 2^{n(n-1) / 4} \operatorname{det}(L) \\
& \left\|\overrightarrow{\mathbf{v}_{\mathbf{j}}}\right\| \leq 2^{(i-1) / 2}\left\|\overrightarrow{\mathbf{v}_{\mathbf{i}}^{*}}\right\| \quad \text { for all } 1 \leq j \leq i \leq n \\
& \left\|\overrightarrow{\mathbf{v}_{\mathbf{1}}}\right\| \leq 2^{(n-1) / 2} \min _{\overrightarrow{\mathbf{0}} \neq \overrightarrow{\mathbf{v}} \in L}\|\overrightarrow{\mathbf{v}}\| \\
&
\end{aligned}
$$

Thm 7.71: The LLL algorithm takes any basis for L and returns an LLL reduced basis in polynomial time.

From Hoffstein, Pipher, Silverman

[1] Input a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for a lattice L
[2] Set $k=2$
[3] Set $\boldsymbol{v}_{1}^{*}=\boldsymbol{v}_{1}$
[4] Loop while $k \leq n$
[5] Loop Down $j=k-1, k-2, \ldots, 2,1$
[6]
Loop Down $j=k-1, k-2, \ldots, 2,1$
Set $\boldsymbol{v}_{k}=\boldsymbol{v}_{k}-\left\lfloor\mu_{k, j}\right\rceil \boldsymbol{v}_{j} \quad$ [Size Reduction]
End j Loop
If $\left\|\boldsymbol{v}_{k}^{*}\right\|^{2} \geq\left(\frac{3}{4}-\mu_{k, k-1}^{2}\right)\left\|\boldsymbol{v}_{k-1}^{*}\right\|^{2}$
[Lovász Condition]
Set $k=k+1$
Else
Swap \boldsymbol{v}_{k-1} and $\boldsymbol{v}_{k} \quad$ [Swap Step]
Set $k=\max (k-1,2)$
End If
[14] End k Loop
[15] Return LLL reduced basis $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$
Note: At each step, $\boldsymbol{v}_{1}^{*}, \ldots, \boldsymbol{v}_{k}^{*}$ is the orthogonal set of vectors obtained
by applying Gram-Schmidt (Theorem 7.13) to the current values of
$\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$, and $\mu_{i, j}$ is the associated quantity $\left(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}^{*}\right) /\left\|\boldsymbol{v}_{j}^{*}\right\|^{2}$.

Figure 7.8: The LLL lattice reduction algorithm

