Let $L \subset \mathbb{R}^{3}$ be a lattice with bases $\mathcal{B}_{1}=\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \overrightarrow{\mathbf{v}_{\mathbf{2}}}, \overrightarrow{\mathbf{v}_{\mathbf{3}}}\right\}$ and $\mathcal{B}_{2}=\left\{\overrightarrow{\mathbf{w}_{\mathbf{1}}}, \overrightarrow{\mathbf{w}_{\mathbf{2}}}, \overrightarrow{\mathbf{w}_{\mathbf{3}}}\right\}$ where

$$
\begin{array}{ll}
\overrightarrow{\mathbf{v}_{\mathbf{1}}}=\langle 1,3,1\rangle & \overrightarrow{\mathbf{w}_{1}}=\langle 18,-5,-5\rangle \\
\overrightarrow{\mathbf{v}_{2}}=\langle-2,1,1\rangle & \overrightarrow{\mathbf{w}_{2}}=\langle-59,-24,2\rangle \\
\overrightarrow{\mathbf{v}_{\mathbf{3}}}=\langle 3,-2,-4\rangle & \overrightarrow{\mathbf{w}_{3}}=\langle-27,-8,2\rangle
\end{array}
$$

1. Verify that \mathcal{B}_{1} and \mathcal{B}_{2} are bases for the same lattice by placing \mathcal{B}_{1} in the rows of a matrix A, \mathcal{B}_{2} in the rows of a matrix B and verify that there is a matrix U with determinant 1 such that $U A=B$.
2. Compute the Hadamard Ratio for \mathcal{B}_{1} and \mathcal{B}_{2}.
3. Use Babai's Algorithm to solve the CVP for $\overrightarrow{\mathbf{w}}=(13,-3,7)$ using \mathcal{B}_{1}. Repeat using \mathcal{B}_{2}.
4. What is the value of $\|\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}}\|$ for your answers from 3 ?
