1. Determine whether each series converges or diverges. If the series converges, find an $n$ so that $S_{n}$ approximates the value of the series accurate within 0.01
(a) $\sum_{k=1}^{\infty} \frac{k^{2}}{k^{3}+1}$
(c) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{k^{3}+1}$
(b) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{2}}{k^{3}+1}$
(d) $\sum_{k=1}^{\infty} \frac{k}{k^{3}+1}$
2. For which values of $x$ does the series $\sum_{k=0}^{\infty} \frac{x^{k}}{7^{k}}$ converge?
