## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 1. } \sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{2^{k}+k}
$$

## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 2. } \sum_{j=5}^{\infty}(-1)^{j} \frac{j!}{(j+2)!}
$$

## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 3. } \sum_{k=3}^{\infty}(-1)^{k+1} \frac{k}{\ln (k)}
$$

## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 4. } \sum_{k=2}^{\infty} \frac{k!}{k!-3}
$$

## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 5. } \sum_{k=1}^{\infty}(-1)^{k+1} \sin (k)
$$

## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 6. } \sum_{k=2}^{\infty}(-1)^{k} \sin \left(\frac{\pi}{k}\right)
$$

## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 7. } \sum_{k=3}^{\infty}(-1)^{k+1} \cos \left(\frac{\pi}{k}\right)
$$

## Does the series converge or diverge?

If it converges, how closely does $S_{100}$ approximate the value of the series?

$$
\text { 8. } \sum_{k=1}^{\infty} \frac{1}{k^{2}+1}
$$

