1. Determine whether the improper integral converges or diverges.
(a) $\int_{1}^{\infty} \frac{1}{x^{3}+2} d x$
(b) $\int_{8}^{\infty} \frac{1}{\sqrt{x}-2} d x$
2. Consider the improper integral $\mathcal{I}=\int_{0}^{5} \frac{1}{\sqrt{x}+x^{2}} d x$
(a) Compare \mathcal{I} to $\int_{0}^{5} \frac{1}{\sqrt{x}} d x$. What can you conclude about \mathcal{I} from this comparison?
(b) Compare \mathcal{I} to $\int_{0}^{5} \frac{1}{x^{2}} d x$. What can you conclude about \mathcal{I} from this comparison?
3. Consider the improper integral $\mathcal{I}=\int_{5}^{\infty} \frac{1}{\sqrt{x}+x^{2}} d x$
(a) Compare \mathcal{I} to $\int_{5}^{\infty} \frac{1}{\sqrt{x}} d x$. What can you conclude about \mathcal{I} from this comparison?
(b) Compare \mathcal{I} to $\int_{5}^{\infty} \frac{1}{x^{2}} d x$. What can you conclude about \mathcal{I} from this comparison?
