- 1. Find the volume below the surface z = 1 + x + y and above the region R in the xy-plane bounded by the graphs $x = 1, y = 0, y = x^2$.
- 2. Find the volume below the surface $z = \cos(x^2)$ and above the triangle R in the xy-plane bounded by the x-axis, the line x = 1, and the line y = x.
- 3. Evaluate $\int_0^{\pi} \int_x^{\pi} \frac{\sin(y)}{y} dy dx$ by reversing the order of integration.
- 4. Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region R in the xy-plane bounded by y = 2x and $y = x^2$.
- 5. Evaluate $\iint_R 2x y \ dA$ where R is the upper half of the circle with center at the origin and radius 2.