1. Find the volume below the surface $z=1+x+y$ and above the region R in the $x y$-plane bounded by the graphs $x=1, y=0, y=x^{2}$.
2. Find the volume below the surface $z=\cos \left(x^{2}\right)$ and above the triangle R in the $x y$-plane bounded by the x-axis, the line $x=1$, and the line $y=x$.
3. Evaluate $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin (y)}{y} d y d x$ by reversing the order of integration.
4. Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region R in the $x y$-plane bounded by $y=2 x$ and $y=x^{2}$.
5. Evaluate $\iint_{R} 2 x-y d A$ where R is the upper half of the circle with center at the origin and radius 2 .
