Some Examples Using Hamilton's Method of Apportionment

Consider a (very) small nation consisting of four states with the following populations in 2010:

State	Population
А	$13,\!000$
В	$15,\!000$
\mathbf{C}	4,000
D	6,000

1. (a) Use Hamilton's method to calculate the apportionment with a House size of 54.

			Quota for	Floor of	Largest	
State	Population	% of Total	54 Seats	Quota	Remainder	Apportionment
A	13,000	34.21%				
В	15,000	39.47%				
\mathbf{C}	4,000	10.53%				
D	6,000	15.79%				
Total	38,000					

(b) Now use Hamilton's method with a House size of 55.

			Quota for	Floor	Largest	
State	Population	% of Total	55 Seats	of Quota	Remainder	Apportionment
А	13,000	34.21%				
В	$15,\!000$	39.47%				
С	4,000	10.53%				
D	6,000	15.79%				
Total	38,000					

(c) Compare your results.

			Quota for	Floor	Largest	
State	Population	% of Total	43 Seats	of Quota	Remainder	Apportionment
А	13,000	34.21%				
В	$15,\!000$	39.47%				
С	4,000	10.53%				
D	6,000	15.79%				
Total	38,000					

2. (a) Use Hamilton's method to calculate the apportionment with a House size of 43.

(b) Now suppose when the next census is completed in 2020 that the states have grown at the following rates:

Recalculate the apportionment using Hamilton's method

	2020		Quota for	Floor	Largest	
State	Population	% of Total	43 Seats	of Quota	Remainder	Apportionment
А						
В						
\mathbf{C}						
D						
Total						

(c) Compare your results.

(d) If B had grown at 13%, how would the result change?

		2020		Quota for	Floor	Largest	
_	State	Population	% of Total	43 Seats	of Quota	Remainder	Apportionment
	А						
	D						
	D						
	С						
	D						
_	Total						

3. Consider once again the calculations from #1 for an apportionment for a House of size 54 for the 2010 census using Hamilton's method. Notice that each representative represents $\frac{38,000}{54} \approx 704$ citizens, on average.

Now suppose that state E is joining the nation with a population of 7,450. Based on the average representation, it seems that E should get 11 seats.

Calculate the apportionment using Hamilton's method with state E added and a House size of 54 + 11 = 65 and compare to the results for a House size of 54 in #1.

			Quota for	Floor of	Largest	
State	Population	% of Total	65 Seats	Quota	Remainder	Apportionment
А	13,000					
В	15,000					
С	4,000					
D	6,000					
Е	7,450					
Total	45,450					