Supplemental Problem for Problem Set \#5

Due Friday, October 21, 2016

This point of these exercises is to give you some experience using RSA to exchange the key that is used in AES.
\odot You will want to download the Mathematica notebook Supplemental_PS5.nb that you can find on the Problem Sets page of the course website. This is an updated version of the notebook from the last problem set.
\odot You should use the site http://people.eku.edu/styere/Encrypt/JS-AES.html for performing the AES encryption and decryption.
\odot You do not need to turn in any work on paper for these exercises. There is a form at onCourse where you can fill out your answers, and you must upload the Mathematica notebook that you used to work on your solutions! You should spend a little time cleaning up your notebook so that it's easy to follow.

S-1. For the RSA parts of this problem, use the values of p and q given in the Mathematica notebook to form $n=p q$. Use a value of $e=2^{16}+1$.
(a) The following ciphertext, in hexadecimal, contains the 128-bit AES key that you will need for part (b) of this problem. This ciphertext was encrypted using RSA with $k_{p u b}=(n, e)$.

$$
\begin{aligned}
& \text { 16bdfeabd1e02c54b88bf510ed7458f7092b1988ba09eb61de4c6765f7 } \\
& \text { a } 97 \mathrm{fc} 97 \mathrm{~b} 352 \mathrm{e} 033 \mathrm{cfc} 802011 \mathrm{c} 7 \mathrm{fc} 0230 \mathrm{f} 12 \mathrm{e} 71 \mathrm{c} 378 \mathrm{c} 10836 \mathrm{~d} 2 \mathrm{ab} 6156 \mathrm{ab} \\
& \text { dc082bdfe0a0844ec97b88504c863d6a4db0f3cdbd7f212521d12cda78 } \\
& \text { e3b49e7cd58c604792a893ca70220d10b9fa4cb139aab7307bb5c7b015 } \\
& 739 \mathrm{c} 35 \mathrm{a} \text { afb } 7 \mathrm{da} 28154 \mathrm{c} 4 \mathrm{e} 4 \text { deebdfdca9d5fb1156d7fb7cb3cc80d529ab } \\
& 380012204 a 1 f 9 b d 3 d 1 a 3 a 9 c 01 e 654376 a e 3 c b 95 a a 2 c f 40 c 4220 c 44 b 464 \\
& \text { a } 490 \text { afb } 72 \text { fbd553d9d706073bbb72e5312b59943a0042422c9507e265b } \\
& 6470426358 \text { a } 9 \text { def } 7826 \mathrm{cbf} 3 \mathrm{e} 2 \mathrm{~d} 91 \mathrm{cda} 158 \mathrm{~d} 24 \mathrm{dcfbca} 67 \mathrm{aa} 5 \mathrm{f} 85 \mathrm{edade} 91 \\
& 476 \mathrm{c} 40 \mathrm{ab} 308 \mathrm{d7795ef} 0 \mathrm{fa} 0 \mathrm{~b} 8 \mathrm{ce} 7 \mathrm{bc} 5 \mathrm{ca} 8 \mathrm{ec} 9844 \mathrm{ee} 66 \mathrm{a} 305216
\end{aligned}
$$

What is the key? Notice that you will need to determine $k_{p r}=d$ in order to decrypt, but you can calculate this since you know the values of p and q.
(b) Decrypt the following message, and tell me something interesting about the quote. The message was generated by converting each character in the plaintext to its ASCII value in hexadecimal and then encrypting with AES:

```
a1 c9 d2 45 f3 ff 00 49 c3 3d c4 44 8a 46 ac 44 9f ba 5f 53
9e ed f8 3b 8e e6 73 95 4b 47 00 90 b9 e4 67 41 68 0e 8a 6f
7c 6b 72 a9 6d 38 bc 3b 58 bc 37 80 45 85 20 f0 18 d7 29 ff
c3 97 27 e9 79 0c 13 45 69 39 cb 07 c4 60 c3 a2 6c 27 3a a2
```

S-2. For RSA parts of this problem, use the values of n and e given in the Mathematica notebook as $k_{p u b}(n, e)$.
(a) Pick a different 128-bit AES key than was used in the first problem, and encrypt it using RSA with $k_{p u b}=(n, e)$.
(b) Share with me another interesting quote, different from the one you used last week.

Use the Mathematica notebook and the AES emulator with the key you shared in part (a) to encrypt the quotation and enter it in onCourse.

