The Invertible Matrix Theorem: Let A be a square $n \times n$ matrix.

 Then the following statements are equivalent.a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\mathbf{x} \rightarrow A \mathbf{x}$ is one-to-one.
g. The equation $A \mathbf{x}=\mathbf{b}$. has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
h. The columns of A span \mathbb{R}^{n}.
i. The linear transformation $\mathbf{x} \rightarrow A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
j. There is an $n \times n$ matrix C such that $C A=l$.
k. There is an $n \times n$ matrix D such that $A D=I$.
I. A^{T} is an invertible matrix.

Sketch of the Proof

