1. For each transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, find the corresponding matrix A.
(a) T rotates by $\frac{\pi}{3}$ counter-clockwise and then reflects over the line $y=x$
(b) T reflects over the line $y=x$ and then rotates by $\frac{\pi}{3}$ counter-clockwise
(c) What is the image of $\mathbf{x}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ under each transformation?
2. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 3 & 4\end{array}\right]$, and $C=\left[\begin{array}{ll}2 & -4 \\ 3 & -6\end{array}\right]$
(a) Compute $A C$ and $B C$
(b) What interesting property of matrix multiplication does this example demonstrate?

Let $A=\left[\begin{array}{rrr}1 & 0 & 3 \\ 2 & 2 & 3 \\ 0 & 4 & -7\end{array}\right], B=\left[\begin{array}{rrr}3 & -2 & 4 \\ 7 & 12 & 8 \\ 16 & 2 & 3\end{array}\right], E_{1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$
Feel free to use Mathematica for these problems.

1. Find A^{-1} and B^{-1}
2. Compare the following products:

$$
A^{-1} B^{-1}, \quad B^{-1} A^{-1}, \quad(A B)^{-1}, \quad(B A)^{-1}
$$

3. Compare $(A B)^{T}, A^{T} B^{T}$, and $B^{T} A^{T}$
4. Find $\left(A^{T}\right)^{-1}$
5. Compare $A, E_{1} A$, and $E_{2} E_{1} A$
