- 1. For each transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, find the corresponding matrix A.
 - (a) T rotates by $\frac{\pi}{3}$ counter-clockwise and then reflects over the line y = x
 - (b) T reflects over the line y = x and then rotates by $\frac{\pi}{3}$ counter-clockwise

(c) What is the image of
$$\mathbf{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 under each transformation?

2. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 0 \\ 3 & 4 \end{bmatrix}$, and $C = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix}$

(a) Compute AC and BC

(b) What interesting property of matrix multiplication does this example demonstrate?

Let
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 3 \\ 0 & 4 & -7 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -2 & 4 \\ 7 & 12 & 8 \\ 16 & 2 & 3 \end{bmatrix}$, $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Feel free to use *Mathematica* for these problems.

- 1. Find A^{-1} and B^{-1}
- 2. Compare the following products:

$$A^{-1}B^{-1}$$
, $B^{-1}A^{-1}$, $(AB)^{-1}$, $(BA)^{-1}$

- 3. Compare $(AB)^T$, A^TB^T , and B^TA^T
- 4. Find $(A^{T})^{-1}$
- 5. Compare A, E_1A , and E_2E_1A

-