1. Let $A=\left[\begin{array}{rrr}1 & 3 & 5 \\ -2 & -6 & 7\end{array}\right]$.
(a) Find all solutions to the homogeneous system $A \mathbf{x}=\mathbf{0}$.
(b) Find all solutions to $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{r}-3 \\ 9\end{array}\right]$.
2. Find all solutions to $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
4 & 8 & 7 & 11
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{r}
-9 \\
-13 \\
-31
\end{array}\right]
$$

3. Create an example of a matrix A and vector \mathbf{b} such that $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions and $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
4. Are the columns of $A=\left[\begin{array}{rrr}1 & 2 & -3 \\ 2 & -3 & 4 \\ -1 & 3 & 2\end{array}\right]$ linearly independent or linearly dependent?
5. Do the vectors $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right] \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}0 \\ -1 \\ 6\end{array}\right] \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}-2 \\ -4 \\ 21\end{array}\right]$ lie in the same plane in \mathbb{R}^{3} ?
6. If A is a 4×5 matrix, are the columns linearly independent or linearly dependent? What if A is 5×4 ?
7. If the system $A \mathbf{x}=\mathbf{b}$ has a unique solution, are the columns of A linearly independent or linearly dependent? Why?
