Theorem 4.9: If V has basis $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$, then every set in V with more than n vectors is linearly dependent in V.

Proof: Let $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ be a set in V where $p>n$. Then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly dependent if there exists a nontrivial solution to

$$
x_{1} \mathbf{v}_{\mathbf{1}}+x_{2} \mathbf{v}_{\mathbf{2}}+\cdots x_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Overview:

- We will convert this into a matrix equation $A \mathbf{x}=\mathbf{0}$ where A is $n \times p$.
- Since $p>n, A$ has a free variable, and there exists a non-trivial solution to the homogeneous system.
- Thus, $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is a linearly dependent set.

Since \mathcal{B} is a basis for V, we can write

$$
\begin{aligned}
& a_{11} \mathbf{b}_{\mathbf{1}}+a_{12} \mathbf{b}_{\mathbf{2}}+\cdots+a_{1 n} \mathbf{b}_{\mathbf{n}}=\mathbf{v}_{\mathbf{1}} \\
& a_{21} \mathbf{b}_{\mathbf{1}}+a_{22} \mathbf{b}_{\mathbf{2}}+\cdots+a_{2 n} \mathbf{b}_{\mathbf{n}}=\mathbf{v}_{2} \\
& \vdots \\
& a_{p 1} \mathbf{b}_{\mathbf{1}}+a_{p 2} \mathbf{b}_{\mathbf{2}}+\cdots+a_{p n} \mathbf{b}_{\mathbf{n}}=\mathbf{v}_{\mathbf{p}}
\end{aligned}
$$

Since \mathcal{B} is a basis for V, we can write

$$
\begin{aligned}
a_{11} \mathbf{b}_{\mathbf{1}}+a_{12} \mathbf{b}_{\mathbf{2}}+\cdots+a_{1 n} \mathbf{b}_{\mathbf{n}} & =\mathbf{v}_{\mathbf{1}} \\
a_{21} \mathbf{b}_{\mathbf{1}}+a_{22} \mathbf{b}_{\mathbf{2}}+\cdots+a_{2 n} \mathbf{b}_{\mathbf{n}} & =\mathbf{v}_{2} \\
\vdots & \\
a_{p 1} \mathbf{b}_{\mathbf{1}}+a_{p 2} \mathbf{b}_{\mathbf{2}}+\cdots+a_{p n} \mathbf{b}_{\mathbf{n}} & =\mathbf{v}_{\mathbf{p}}
\end{aligned}
$$

Remember we are looking for a non-trivial solution to

$$
x_{1} \mathbf{v}_{\mathbf{1}}+x_{2} \mathbf{v}_{\mathbf{2}}+\cdots x_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Since \mathcal{B} is a basis for V, we can write

$$
\begin{aligned}
& a_{11} \mathbf{b}_{\mathbf{1}}+a_{12} \mathbf{b}_{2}+\cdots+a_{1 n} \mathbf{b}_{\mathbf{n}}=\mathbf{v}_{\mathbf{1}} \\
& a_{21} \mathbf{b}_{\mathbf{1}}+a_{22} \mathbf{b}_{2}+\cdots+a_{2 n} \mathbf{b}_{\mathbf{n}}=\mathbf{v}_{\mathbf{2}}
\end{aligned}
$$

$$
a_{p 1} \mathbf{b}_{1}+a_{p 2} \mathbf{b}_{2}+\cdots+a_{p n} \mathbf{b}_{\mathbf{n}}=\mathbf{v}_{\mathbf{p}}
$$

Remember we are looking for a non-trivial solution to

$$
x_{1} \mathbf{v}_{\mathbf{1}}+x_{2} \mathbf{v}_{\mathbf{2}}+\cdots x_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

which becomes

$$
\begin{gathered}
x_{1}\left(a_{11} \mathbf{b}_{\mathbf{1}}+a_{12} \mathbf{b}_{\mathbf{2}}+\cdots+a_{1 n} \mathbf{b}_{\mathbf{n}}\right)+ \\
x_{2}\left(a_{21} \mathbf{b}_{\mathbf{1}}+a_{22} \mathbf{b}_{\mathbf{2}}+\cdots+a_{2 n} \mathbf{b}_{\mathbf{n}}\right)+ \\
\cdots+x_{p}\left(a_{p 1} \mathbf{b}_{1}+a_{p 2} \mathbf{b}_{\mathbf{2}}+\cdots+a_{p n} \mathbf{b}_{\mathbf{n}}\right)=\mathbf{0}
\end{gathered}
$$

We can rearrange

$$
\begin{gathered}
x_{1}\left(a_{11} \mathbf{b}_{\mathbf{1}}+a_{12} \mathbf{b}_{\mathbf{2}}+\cdots+a_{1 n} \mathbf{b}_{\mathbf{n}}\right)+ \\
x_{2}\left(a_{21} \mathbf{b}_{\mathbf{1}}+a_{22} \mathbf{b}_{\mathbf{2}}+\cdots+a_{2 n} \mathbf{b}_{\mathbf{n}}\right)+ \\
\cdots+x_{p}\left(a_{p 1} \mathbf{b}_{\mathbf{1}}+a_{p 2} \mathbf{b}_{\mathbf{2}}+\cdots+a_{p n} \mathbf{b}_{\mathbf{n}}\right)=\mathbf{0}
\end{gathered}
$$

to

$$
\begin{gathered}
\left(x_{1} a_{11}+x_{2} a_{21}+\cdots+x_{p} a_{p 1}\right) \mathbf{b}_{1}+ \\
\left(x_{1} a_{12}+x_{2} a_{22}+\cdots+x_{p} a_{p 2}\right) \mathbf{b}_{2}+ \\
\cdots+\left(x_{1} a_{1 n}+x_{2} a_{2 n}+\cdots+x_{p} a_{p n}\right) \mathbf{b}_{\mathbf{n}}=\mathbf{0}
\end{gathered}
$$

Remember $\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a linearly independent set.

Since $\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a linearly independent, we get

$$
\begin{aligned}
x_{1} a_{11}+x_{2} a_{21}+\cdots+x_{p} a_{p 1} & =0 \\
x_{1} a_{12}+x_{2} a_{22}+\cdots+x_{p} a_{p 2} & =0 \\
\vdots & \\
x_{1} a_{1 n}+x_{2} a_{2 n}+\cdots+x_{p} a_{p n} & =0
\end{aligned}
$$

This converts to the matrix equation

$$
\left[\begin{array}{rrlr}
a_{11} & a_{21} & \cdots & a_{p 1} \\
a_{12} & a_{22} & \cdots & a_{p 2} \\
\vdots & & & \\
a_{1 n} & a_{2 n} & \cdots & a_{p n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=\mathbf{0}
$$

Which is the same as $A \mathbf{x}=\mathbf{0}$ where A is $n \times p$ with $p>n$.
Thus, A has a free variable and $A \mathbf{x}=\mathbf{0}$ has a non-trivial solution. Thus, $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ must be linearly dependent.

