1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that rotates the plane by $\frac{\pi}{3}$ counter-clockwise and projects onto the *y*-axis. Define

$$\ker(T) = \left\{ \mathbf{x} \in \mathbb{R}^2 \mid T(\mathbf{x}) = \mathbf{0} \right\}$$
$$\operatorname{range}(T) = \left\{ \mathbf{b} \in \mathbb{R}^2 \mid \exists \ \mathbf{x} \in \mathbb{R}^2 \ni \ T(\mathbf{x}) = \mathbf{b} \right\}$$

- (a) Find a basis for ker(T)
- (b) Find a basis for range(T)
- 2. Let $\mathbf{u} = (1,0,4)$, $\mathbf{v} = (2,-1,1)$, $\mathbf{w} = (-1,2,7)$
 - (a) Show that the set $\mathcal{B} = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ forms a basis for \mathbb{R}^3 .
 - (b) Write $\mathbf{b} = (17, -2, 4)$ as a linear combination of the vectors in \mathcal{B}
- 3. Let $p_1(t) = 1 + t^2$, $p_2(t) = 2 t + 3t^2$, and $p_3(t) = -1 + 2t t^2$
 - (a) Show that the set $\mathcal{B} = \{p_1, p_2, p_3\}$ forms a basis for \mathbb{P}_2
 - (b) Write $p(t) = 3 + 6t 7t^2$ as a linear combination of the vectors in \mathcal{B}

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

1 / 1