1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that rotates the plane by $\frac{\pi}{3}$ counter-clockwise and projects onto the y-axis. Define

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{\mathbf{x} \in \mathbb{R}^{2} \mid T(\mathbf{x})=\mathbf{0}\right\} \\
\operatorname{range}(T) & =\left\{\mathbf{b} \in \mathbb{R}^{2} \mid \exists \mathbf{x} \in \mathbb{R}^{2} \ni \quad T(\mathbf{x})=\mathbf{b}\right\}
\end{aligned}
$$

(a) Find a basis for $\operatorname{ker}(T)$
(b) Find a basis for range (T)
2. Let $\mathbf{u}=(1,0,4), \mathbf{v}=(2,-1,1), \mathbf{w}=(-1,2,7)$
(a) Show that the set $\mathcal{B}=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ forms a basis for \mathbb{R}^{3}.
(b) Write $\mathbf{b}=(17,-2,4)$ as a linear combination of the vectors in \mathcal{B}
3. Let $p_{1}(t)=1+t^{2}, p_{2}(t)=2-t+3 t^{2}$, and $p_{3}(t)=-1+2 t-t^{2}$
(a) Show that the set $\mathcal{B}=\left\{p_{1}, p_{2}, p_{3}\right\}$ forms a basis for \mathbb{P}_{2}
(b) Write $p(t)=3+6 t-7 t^{2}$ as a linear combination of the vectors in \mathcal{B}

