A **vector space** is a nonempty set of objects V, called *vectors*, which have two operations defined: *addition* of vectors and *multiplication by scalars* (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , $\mathbf{w} \in V$ and for all scalars c and d.

- 1. $u + v \in V$
- 2. u + v = v + u
- 3. (u + v) + w = u + (v + w)
- 4. There exists a vector $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. For all $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V$
- 7. c(u + v) = cu + cv
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1u = u

1. Let
$$H_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \ge 0, y \ge 0 \right\}$$
 be the first quadrant in \mathbb{R}^2 .

Show that H_1 is *not* a subspace of \mathbb{R}^2 by finding a specific vector $\mathbf{u} \in H_1$ and a specific scalar c such that $c\mathbf{u} \notin H_1$.

2. Let
$$H_2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \cdot y \ge 0 \right\}$$
 be the union of the first and third quadrants in \mathbb{R}^2 .

Show that H_2 is *not* a subspace of \mathbb{R}^2 by finding specific vectors $\mathbf{u}, \mathbf{v} \in H_2$ such that $\mathbf{u} + \mathbf{v} \notin H_2$.