Let $\mathbf{u}_{1}=\left[\begin{array}{l}-1 \\ -3 \\ -2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{r}3 \\ -5 \\ 6\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{r}9 \\ -8 \\ 4\end{array}\right]$.

1. Verify that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis for $\mathbb{R}^{3}$.
2. Find $\hat{\mathbf{y}_{1}}$, the orthogonal projection of $\mathbf{y}$ onto $\mathbf{u}_{1}$
$\hat{\mathbf{y}_{2}}$, the orthogonal projection of $\mathbf{y}$ onto $\mathbf{u}_{2}$. $\hat{\mathbf{y}_{3}}$, the orthogonal projection of $\mathbf{y}$ onto $\mathbf{u}_{3}$.
3. Find scalars $c_{1}, c_{2}$, and $c_{3}$ such that $\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$
4. Form the matrix $A=\left[\begin{array}{lll}\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}} & \mathbf{u}_{3}\end{array}\right]$, and calculate $A^{T} A$.
