Let
$$\mathbf{u_1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{u_2} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{u_3} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$

1. Find a vector $\textbf{x} \in \mathbb{R}^3$ that is orthogonal to $\textbf{u}_1.$

2. Find a vector $\mathbf{y} \in \mathbb{R}^3$ that is orthogonal to both \mathbf{u}_1 and \mathbf{u}_2 .

3. Find all vectors $\mathbf{z} \in \mathbb{R}^3$ that are orthogonal to $\mathbf{u_1}$, $\mathbf{u_2}$, and $\mathbf{u_3}$.

- 4. Let A be the matrix formed by putting u₁, u₂, u₃ in the rows of A
 (a) How are the vectors z from #3 related to row(A)?
 - (b) In which fundamental subspace of A do the vectors z from #3 lie?