Thm 5.5: A is diagonalizable iff A has n linearly independent eigenvectors. In particular, if $A = PDP^{-1}$ then the columns in P are n linearly independent eigenvectors of A and the entries in the diagonal of D are the corresponding eigenvalues of A.

- (⇒) Suppose A is diagonalizable where $A = PDP^{-1}$.
 - ▶ We need to show A has n linearly independent eigenvectors.
 - Let $P = [\mathbf{v_1}, \dots, \mathbf{v_n}]$ and call the diagonal entries of D be $\lambda_1, \dots, \lambda_n$.
 - We will show λ_i is an eigenvalue with corresponding eigenvector \mathbf{v}_i .
 - Then

$$AP = PD$$

$$A[\mathbf{v}_1, \dots, \mathbf{v}_n] = [\mathbf{v}_1, \dots, \mathbf{v}_n]D$$

$$[A\mathbf{v}_1 \ \dots \ A\mathbf{v}_n] = [\lambda_1\mathbf{v}_1 \ \dots \ \lambda_n\mathbf{v}_n]$$

- ▶ Thus the columns in *P* are eigenvectors and the entries in *D* are eigenvalues of *A*.
- ► Since *P* is invertible, its columns form a linearly independent set.
- ► Therefore, A has n linearly independent eigenvectors.

T. Ratliff (Wheaton College)

12

イロト イポト イヨト イヨト

(\Leftarrow) Suppose A has *n* linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

- We need to show that A is diagonalizable.
- Form the matrix P = [v₁,..., v_n] and place the corresponding eigenvalues λ₁,..., λ_n on the diagonal of a matrix D.

Then

$$AP = A[\mathbf{v}_1, \dots, \mathbf{v}_n]$$

= $[A\mathbf{v}_1 \dots A\mathbf{v}_n]$
= $[\lambda_1\mathbf{v}_1 \dots \lambda_n\mathbf{v}_n]$
= $[\mathbf{v}_1, \dots, \mathbf{v}_n]D$
= PD

- ► Since the columns of *P* are linearly independent, *P* is invertible.
- Thus $A = PDP^{-1}$ and A is diagonalizable. \Box

Recap

Theorem 5.5: A is diagonalizable iff A has n linearly independent eigenvectors. In particular, if $A = PDP^{-1}$ then the columns in P are n linearly independent eigenvectors of A and the entries in the diagonal of D are the corresponding eigenvalues of A.

Theorem 5.6: If A is $n \times n$ with n distinct eigenvalues, then A is diagonalizable.

Note: A may be diagonalizable with less than *n* distinct eigenvalues if its repeated eigenvalues have enough linearly independent eigenvectors.

Classify the origin as a sink (attractor), source (repeller), or saddle for the dynamical system $\mathbf{x}_{\mathbf{k}+1} = A\mathbf{x}_{\mathbf{k}}$.

Explain your answer using a plot from Mathematica and the eigenvalues and eigenvectors of A.

1.
$$A = \frac{1}{96} \begin{bmatrix} 47 & 3 \\ 5 & 33 \end{bmatrix}$$
 4. $A = \begin{bmatrix} 1 & -18 \\ -3 & 4 \end{bmatrix}$

2.
$$A = \frac{1}{15} \begin{bmatrix} 3 & 6 \\ -14 & 47 \end{bmatrix}$$
 5. $A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$

3.
$$A = \frac{1}{32} \begin{bmatrix} 89 & -21 \\ -35 & -9 \end{bmatrix}$$
 6. $A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$