Thm 5.5: A is diagonalizable iff A has n linearly independent eigenvectors. In particular, if $A=P D P^{-1}$ then the columns in P are n linearly independent eigenvectors of A and the entries in the diagonal of D are the corresponding eigenvalues of A.
(\Rightarrow) Suppose A is diagonalizable where $A=P D P^{-1}$.

- We need to show A has n linearly independent eigenvectors.
- Let $P=\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right]$ and call the diagonal entries of D be $\lambda_{1}, \ldots, \lambda_{n}$.
- We will show λ_{i} is an eigenvalue with corresponding eigenvector $\mathbf{v}_{\mathbf{i}}$.
- Then

$$
\begin{aligned}
A P & =P D \\
A\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right] & =\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right] D \\
{\left[A \mathbf{v}_{\mathbf{1}} \ldots A \mathbf{v}_{\mathbf{n}}\right] } & =\left[\lambda_{1} \mathbf{v}_{\mathbf{1}} \ldots \lambda_{n} \mathbf{v}_{\mathbf{n}}\right]
\end{aligned}
$$

- Thus the columns in P are eigenvectors and the entries in D are eigenvalues of A.
- Since P is invertible, its columns form a linearly independent set.
- Therefore, A has n linearly independent eigenvectors.
(\Leftarrow) Suppose A has n linearly independent eigenvectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$.
- We need to show that A is diagonalizable.
- Form the matrix $P=\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right]$ and place the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal of a matrix D.
- Then

$$
\begin{aligned}
& A P=A\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right] \\
& =\left[\begin{array}{lll}
A \mathbf{v}_{\mathbf{1}} & \ldots & A \mathbf{v}_{\mathbf{n}}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\lambda_{1} \mathbf{v}_{\mathbf{1}} & \ldots & \lambda_{n} \mathbf{v}_{\mathbf{n}}
\end{array}\right] \\
& =\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right] D \\
& =P D
\end{aligned}
$$

- Since the columns of P are linearly independent, P is invertible.
- Thus $A=P D P^{-1}$ and A is diagonalizable.

Recap

Theorem 5.5: A is diagonalizable iff A has n linearly independent eigenvectors.
In particular, if $A=P D P^{-1}$ then the columns in P are n linearly independent eigenvectors of A and the entries in the diagonal of D are the corresponding eigenvalues of A.

Theorem 5.6: If A is $n \times n$ with n distinct eigenvalues, then A is diagonalizable.

Note: A may be diagonalizable with less than n distinct eigenvalues if its repeated eigenvalues have enough linearly independent eigenvectors.

Classify the origin as a sink (attractor), source (repeller), or saddle for the dynamical system $\mathrm{x}_{\mathrm{k}+1}=A \mathrm{x}_{\mathrm{k}}$.

Explain your answer using a plot from Mathematica and the eigenvalues and eigenvectors of A.

1. $A=\frac{1}{96}\left[\begin{array}{rr}47 & 3 \\ 5 & 33\end{array}\right]$
2. $A=\left[\begin{array}{rr}1 & -18 \\ -3 & 4\end{array}\right]$
3. $A=\frac{1}{15}\left[\begin{array}{rr}3 & 6 \\ -14 & 47\end{array}\right]$
4. $A=\left[\begin{array}{rr}3 & -1 \\ 1 & 1\end{array}\right]$
5. $A=\frac{1}{32}\left[\begin{array}{rr}89 & -21 \\ -35 & -9\end{array}\right]$
6. $A=\left[\begin{array}{rr}1 & 2 \\ -3 & 4\end{array}\right]$
