Theorem 5.2: If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Proof: Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is a linearly dependent set.
We will show that we get a contradiction.

Theorem 5.2: If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Proof: Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is a linearly dependent set.
We will show that we get a contradiction.
Since the vectors are non-zero, we know that at least one must be a linear combination of the others. Let $p+1$ be the lowest index of a dependent vector.

Theorem 5.2: If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Proof: Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is a linearly dependent set.
We will show that we get a contradiction.
Since the vectors are non-zero, we know that at least one must be a linear combination of the others. Let $p+1$ be the lowest index of a dependent vector.
Then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly independent and we can write

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{\rho} \mathbf{v}_{\mathbf{p}}=\mathbf{v}_{\mathbf{p}+\mathbf{1}}
$$

Theorem 5.2: If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Proof: Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is a linearly dependent set.
We will show that we get a contradiction.
Since the vectors are non-zero, we know that at least one must be a linear combination of the others. Let $p+1$ be the lowest index of a dependent vector.

Then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly independent and we can write

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{v}_{\mathbf{p}+\mathbf{1}}
$$

Multiplying both sides by A gives

$$
c_{1} \lambda_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \lambda_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{p} \lambda_{p} \mathbf{v}_{\mathbf{p}}=\lambda_{p+1} \mathbf{v}_{\mathbf{p}+\mathbf{1}} \quad(* *)
$$

Theorem 5.2: If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Proof: Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is a linearly dependent set.
We will show that we get a contradiction.
Since the vectors are non-zero, we know that at least one must be a linear combination of the others. Let $p+1$ be the lowest index of a dependent vector.

Then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly independent and we can write

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{v}_{\mathbf{p}+\mathbf{1}}
$$

Multiplying both sides by A gives

$$
c_{1} \lambda_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \lambda_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{p} \lambda_{p} \mathbf{v}_{\mathbf{p}}=\lambda_{p+1} \mathbf{v}_{\mathbf{p}+\mathbf{1}} \quad(* *)
$$

Multiplying both sides of $(*)$ by λ_{p+1} and subtracting from ($* *$) gives

$$
\left.c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{1}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{2}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right)\right) \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Proof of Theorem 5.2 (continued)

We have

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{1}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{2}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Proof of Theorem 5.2 (continued)

We have

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{1}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{2}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Notice that $\lambda_{i}-\lambda_{p+1} \neq 0$ for all i since the eigenvalues are distinct.

Proof of Theorem 5.2 (continued)

We have

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{1}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{2}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Notice that $\lambda_{i}-\lambda_{p+1} \neq 0$ for all i since the eigenvalues are distinct.
Thus, we must have $c_{1}=c_{2}=\cdots=c_{p}=0$ since $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is a linearly independent set.

Proof of Theorem 5.2 (continued)

We have

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{1}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{2}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Notice that $\lambda_{i}-\lambda_{p+1} \neq 0$ for all i since the eigenvalues are distinct.
Thus, we must have $c_{1}=c_{2}=\cdots=c_{p}=0$ since $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is a linearly independent set.
But remember that

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{v}_{\mathbf{p}+\mathbf{1}}
$$

Proof of Theorem 5.2 (continued)

We have

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{1}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{2}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

Notice that $\lambda_{i}-\lambda_{p+1} \neq 0$ for all i since the eigenvalues are distinct.
Thus, we must have $c_{1}=c_{2}=\cdots=c_{p}=0$ since $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is a linearly independent set.
But remember that

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{v}_{\mathbf{p}+\mathbf{1}}
$$

Thus $\mathbf{v}_{\mathbf{p}+\mathbf{1}}=0$. This contradicts that v_{p+1} is an eigenvector.

Therefore, $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is a linearly independent set.

1. Let $A=\left[\begin{array}{rr}1 & -18 \\ -3 & 4\end{array}\right]$
(a) Find the eigenvectors and eigenvalues of A
(b) Factor A into a product $P D P^{-1}$.
(c) Use your factorization to compute A^{20}.
2. Construct a matrix A with eigenvalues $0,2,3$ and eigenvectors $(1,3,-2),(3,2,0)$, and $(-2,1,4)$, respectively.
3. Is $A=\left[\begin{array}{rr}3 & -1 \\ 1 & 1\end{array}\right]$ diagonalizable?
4. True or False
(a) If A is diagonalizable, then A invertible.
(b) If A is invertible, then A is diagonalizable.
