Some Examples Using Hamilton's Method of Apportionment

Consider a (very) small nation consisting of four states with the following populations in 2010:

State	Population
A	13,000
В	15,000
\mathbf{C}	4,000
D	6,000
TOTAL	38,000

1.	Use	Hamilton's	method	to	calculate	the	apportionment	with	a]	House	size	of	54

Now use Hamilton's method with a House size of 55.

Compare your results.

2. Use Hamilton's method to calculate the apportionment with a House size of 43.

Now suppose when the next census is completed in 2020 that the states have grown at the following rates:

A by
$$11\%$$
 B by 15% C by 10% D by 20%

Recalculate the apportionment using Hamilton's method. Compare your results.

If B had grown at 13%, how would the result change?

3. Consider once again the calculations from #1 for an apportionment for a House of size 54 for the 2010 census using Hamilton's method. Notice that each representative represents $\frac{38,000}{54} \approx 704$ citizens, on average.

Now suppose that state E is joining the nation with a population of 7,450. Based on the average representation, it seems that E should get 11 seats. Calculate the apportionment using Hamilton's method with state E added and a House size of 54 + 11 = 65.

Compare your results to the House size of 54.

T. Ratliff Feb 17, 2014