Some Examples Using Hamilton's Method of Apportionment

Consider a (very) small nation consisting of four states with the following populations in 2010:

State	Population
A	13,000
B	15,000
C	4,000
D	6,000
TOTAL	$\mathbf{3 8 , 0 0 0}$

1. Use Hamilton's method to calculate the apportionment with a House size of 54 .

Now use Hamilton's method with a House size of 55.
Compare your results.
2. Use Hamilton's method to calculate the apportionment with a House size of 43.

Now suppose when the next census is completed in 2020 that the states have grown at the following rates:
A by $11 \% \quad$ B by $15 \% \quad$ C by $10 \% \quad$ D by 20%
Recalculate the apportionment using Hamilton's method. Compare your results.

If B had grown at 13%, how would the result change?
3. Consider once again the calculations from $\# 1$ for an apportionment for a House of size 54 for the 2010 census using Hamilton's method. Notice that each representative represents $\frac{38,000}{54} \approx 704$ citizens, on average.
Now suppose that state E is joining the nation with a population of 7,450 . Based on the average representation, it seems that E should get 11 seats. Calculate the apportionment using Hamilton's method with state E added and a House size of $54+11=65$.
Compare your results to the House size of 54 .

