The Decomposition of \mathbb{R}^{6} for Three Candidate Elections

$$
M=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 2 \\
1 & 0 & 0 & 0 & 1 & 2
\end{array}\right] \quad M^{-1}=\frac{1}{6}\left[\begin{array}{rrrrrr}
-4 & 1 & 5 & 4 & -1 & 1 \\
2 & -2 & 2 & -2 & 2 & -2 \\
3 & 0 & -3 & 3 & 0 & -3 \\
0 & 3 & -3 & 0 & 3 & -3 \\
2 & 1 & -1 & -2 & -1 & 1 \\
1 & -1 & -2 & -1 & 1 & 2
\end{array}\right]
$$

- Columns of M are formed by $K, C_{y}, B_{A}, B_{B}, R_{A}, R_{B}$
- $\operatorname{det}(M)=12 \neq 0$ implies that $K, C_{y}, B_{A}, B_{B}, R_{A}, R_{B}$ form a basis for \mathbb{R}^{6}
- If $\overrightarrow{\mathbf{p}} \in \mathbb{R}^{6}$ is a profile with standard coordinates, then $M^{-1} \overrightarrow{\mathbf{p}}$ gives the decomposition in terms of $K, C_{y}, R_{1}, R_{2}, B_{1}, B_{2}$

