These are only a \underline{few} sample problems to help you prepare for the exam. You should also be certain that you completely understand the WebWork assignments, Problems Sets, in-class work, and your class notes.

- 1. You will definitely want to review your techniques of antidifferentiation, including u-substitution, integration by parts, and integrals involving the inverse trig functions.
- 2. Find and classify the critical points of $f(x,y) = 4xy x^3 2y^2$.
- 3. Let $f(x,y) = 10x^2y 5x^2 4y^2 x^4 2y^4$. Verify that

$$p_1 = (0,0)$$

$$p_2 = (-2.644, 1.898)$$

$$p_3 = (2.644, 1.898)$$

$$p_4 = (-0.856, 0.646)$$

$$p_5 = (0.856, 0.646)$$

are critical points, and use the contour plot to classify them.

4. Evaluate the following integrals.

(a)
$$\int_0^8 \int_{\sqrt[3]{y}}^2 \sin(x^4) \ dx \ dy$$

(b)
$$\int_0^1 \int_{\sqrt[5]{y}}^1 \cos(x^3) \ dx \ dy$$

- 5. Find the volumes of the solid that lies below the graph $z = y \cos(x^2) + 3$ and above the region in the xy-plane bounded by the graphs $x = y^2$ and x = 9.
- 6. Find the point on the surface $z = x^2 + y^2 2x 2y + 2$ that is closest to the origin.

T. Ratliff Spring 2014