Why the product rule is true:

$$
\begin{aligned}
& \frac{d}{d x}(f(x) g(x)) \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\frac{f(x) g(x+h)-f(x) g(x)}{h}\right) \\
= & \lim _{h \rightarrow 0}\left(\left[\frac{f(x+h)-f(x)}{h}\right] g(x+h)+f(x)\left[\frac{g(x+h)-g(x)}{h}\right]\right) \\
= & f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

1. For each function, find its derivative.
(a) $h(x)=\left(x^{3 / 2}-4 x\right)\left(\sqrt{x}+\frac{2}{x^{3}}\right)$
(b) $h(x)=\frac{3+2 x^{-3}}{8 x^{3}-4 x}$
(c) $h(x)=\frac{\left(x^{2}-2 x\right)\left(x^{10}-\frac{1}{x}\right)}{x^{2}}$
2. Using the function from 1 (b), find the equation of the line tangent to $y=h(x)$ at $x=1$.
