- 1. Find the area of the region that is above the graph of $y = 2x^2$ and below the graph of y = -5x + 3.
- 2. Recall that we cannot find an antiderivative for $f(x) = \sin(x^2)$ to evaluate $\mathcal{I} = \int_0^1 \sin(x^2) dx$. There are a couple of ways we can approximate \mathcal{I} .
 - (a) Plot y = f(x), and calculate L₁₀ and R₁₀.
 Will L₁₀ overestimate or underestimate I? How about R₁₀?
 How accurate is your approximation to the exact value of I?
 - (b) Find the Taylor Polynomial of degree 7 for sin(x).
 (You can also check your notes from March 9).
 Use this to find a Taylor polynomial for f(x).
 Substitute this Taylor polynomial into the integral and evaluate to approximate I.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへ⊙