1. Find the area of the region that is above the graph of $y=2 x^{2}$ and below the graph of $y=-5 x+3$.
2. Recall that we cannot find an antiderivative for $f(x)=\sin \left(x^{2}\right)$ to evaluate $\mathcal{I}=\int_{0}^{1} \sin \left(x^{2}\right) d x$.
There are a couple of ways we can approximate \mathcal{I}.
(a) Plot $y=f(x)$, and calculate L_{10} and R_{10}.

Will L_{10} overestimate or underestimate \mathcal{I} ? How about R_{10} ? How accurate is your approximation to the exact value of \mathcal{I} ?
(b) Find the Taylor Polynomial of degree 7 for $\sin (x)$.
(You can also check your notes from March 9).
Use this to find a Taylor polynomial for $f(x)$. Substitute this Taylor polynomial into the integral and evaluate to approximate \mathcal{I}.

