1. Find the volume below the surface $z=1+x+y$ and above the rectangle $R=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 3\}$ in the $x y$-plane.
2. Find the volume below the surface $z=1+x+y$ and above the region R in the $x y$-plane bounded by the graphs $x=1, y=0, y=x^{2}$.
3. Find the volume below the surface $z=e^{-x^{2}}$ and above the triangle R in the $x y$-plane bounded by the x-axis, the line $x=1$, and the line $y=x$.
4. Evaluate $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin (y)}{y} d y d x$ by reversing the order of integration.
5. Find the volume of the first octant part of the solid bounded by the cylinders $x^{2}+y^{2}=1$ and $y^{2}+z^{2}=1$.
