- 1. Consider the series $\sum_{k=1}^{\infty} \frac{k}{k^4 + 1}$
 - a. Use the Integral Test to show that the series converges
 - b. Use Maple to calculate S_{50}
 - c. How accurately does S_{50} approximate the exact value of the series?
- 2. Do the following series converge or diverge?

a.
$$\sum_{k=1}^{\infty} \frac{\sin(k) + 3}{5k^{17}}$$

b.
$$\sum_{k=2}^{\infty} \frac{1}{k \ln(k)}$$

$$c. \sum_{k=1}^{\infty} \frac{k+2}{k+17}$$

- 1. Consider the series $\sum_{k=1}^{\infty} \frac{3^k}{5^k + 17}$
 - a. Show that the series converges
 - b. Calculate S_{30}
 - c. How accurately does S_{50} approximate the exact value of the series?
- 2. Do the following converge or diverge?

a.
$$\sum_{j=2}^{\infty} \frac{j!}{(j+2)!}$$

b.
$$\int_{1}^{\infty} \frac{e^{x}}{3^{x+1}} dx$$