- A. Let $F(x,y) = \langle M(x,y), N(x,y) \rangle = \langle y, -x \rangle$. Let $\mathcal C$ be the unit circle oriented counterclockwise and let R be the region enclosed by $\mathcal C$. Calculate the following.
 - 1. $\int_{\gamma} M \, dx + N \, dy = \int_{\mathcal{C}} F(x, y) \cdot dr$
 - 2. $\iint_{R} \left(\frac{\partial N}{\partial x} \frac{\partial M}{\partial y} \right) dA$
- B. Use Green's Theorem to evaluate $\int_{\mathcal{C}} F(x, y) \cdot dr$ in each case.
 - 1. $F(x,y) = \langle y^2 + x^2, x + y \rangle$ C is the square with vertices (0,0), (1,0), (1,1) and (0,1)
 - 2. $F(x,y) = \langle y^2 + x, x + y \rangle$ C is the circle of radius 1 centered at the origin
 - 3. $F(x,y) = \langle x y, x + y \rangle$ C is the circle of radius 3 with center (1,0)

